The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Rarita-Schwinger type operators on spheres and real projective space”

Fischer decompositions in Euclidean and Hermitean Clifford analysis

Freddy Brackx, Hennie de Schepper, Vladimír Souček (2010)

Archivum Mathematicum

Similarity:

Euclidean Clifford analysis is a higher dimensional function theory studying so–called monogenic functions, i.e. null solutions of the rotation invariant, vector valued, first order Dirac operator ̲ . In the more recent branch Hermitean Clifford analysis, this rotational invariance has been broken by introducing a complex structure J on Euclidean space and a corresponding second Dirac operator ̲ J , leading to the system of equations ̲ f = 0 = ̲ J f expressing so-called Hermitean monogenicity. The invariance...

A tutorial on conformal groups

Ian Porteous (1996)

Banach Center Publications

Similarity:

Our concern is with the group of conformal transformations of a finite-dimensional real quadratic space of signature (p,q), that is one that is isomorphic to p , q , the real vector space p + q , furnished with the quadratic form x ( 2 ) = x · x = - x 1 2 - x 2 2 - . . . - x p 2 + x p + 1 2 + . . . + x p + q 2 , and especially with a description of this group that involves Clifford algebras.

Additive combinations of special operators

Pei Wu (1994)

Banach Center Publications

Similarity:

This is a survey paper on additive combinations of certain special-type operators on a Hilbert space. We consider (finite) linear combinations, sums, convex combinations and/or averages of operators from the classes of diagonal operators, unitary operators, isometries, projections, symmetries, idempotents, square-zero operators, nilpotent operators, quasinilpotent operators, involutions, commutators, self-commutators, norm-attaining operators, numerical-radius-attaining operators, irreducible...

Twisted spherical means in annular regions in n and support theorems

Rama Rawat, R.K. Srivastava (2009)

Annales de l’institut Fourier

Similarity:

Let Z ( Ann ( r , R ) ) be the class of all continuous functions f on the annulus Ann ( r , R ) in n with twisted spherical mean f × μ s ( z ) = 0 , whenever z n and s > 0 satisfy the condition that the sphere S s ( z ) Ann ( r , R ) and ball B r ( 0 ) B s ( z ) . In this paper, we give a characterization for functions in Z ( Ann ( r , R ) ) in terms of their spherical harmonic coefficients. We also prove support theorems for the twisted spherical means in n which improve some of the earlier results.

Translation to bundle operators.

Branson, Thomas P., Hong, Doojin (2007)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

Similarity: