On the Diophantine equation x 2 + 2 α 5 β 17 γ = y n

Hemar Godinho; Diego Marques; Alain Togbé

Communications in Mathematics (2012)

  • Volume: 20, Issue: 2, page 81-88
  • ISSN: 1804-1388

Abstract

top
In this paper, we find all solutions of the Diophantine equation x 2 + 2 α 5 β 17 γ = y n in positive integers x , y 1 , α , β , γ , n 3 with gcd ( x , y ) = 1 .

How to cite

top

Godinho, Hemar, Marques, Diego, and Togbé, Alain. "On the Diophantine equation $x^2+2^\alpha 5^\beta 17^\gamma =y^n$." Communications in Mathematics 20.2 (2012): 81-88. <http://eudml.org/doc/251384>.

@article{Godinho2012,
abstract = {In this paper, we find all solutions of the Diophantine equation $x^2+2^\alpha 5^\beta 17^\gamma = y^n$ in positive integers $x,y\ge 1$, $\alpha ,\beta ,\gamma ,n\ge 3$ with $\gcd (x,y)=1$.},
author = {Godinho, Hemar, Marques, Diego, Togbé, Alain},
journal = {Communications in Mathematics},
keywords = {Diophantine equation; exponential equation; primitive divisor theorem; exponential Diophantine equation},
language = {eng},
number = {2},
pages = {81-88},
publisher = {University of Ostrava},
title = {On the Diophantine equation $x^2+2^\alpha 5^\beta 17^\gamma =y^n$},
url = {http://eudml.org/doc/251384},
volume = {20},
year = {2012},
}

TY - JOUR
AU - Godinho, Hemar
AU - Marques, Diego
AU - Togbé, Alain
TI - On the Diophantine equation $x^2+2^\alpha 5^\beta 17^\gamma =y^n$
JO - Communications in Mathematics
PY - 2012
PB - University of Ostrava
VL - 20
IS - 2
SP - 81
EP - 88
AB - In this paper, we find all solutions of the Diophantine equation $x^2+2^\alpha 5^\beta 17^\gamma = y^n$ in positive integers $x,y\ge 1$, $\alpha ,\beta ,\gamma ,n\ge 3$ with $\gcd (x,y)=1$.
LA - eng
KW - Diophantine equation; exponential equation; primitive divisor theorem; exponential Diophantine equation
UR - http://eudml.org/doc/251384
ER -

References

top
  1. Muriefah, F. S. Abu, On the Diophantine equation x 2 + 5 2 k = y n , Demonstratio Math., 39, 2006, 285-289, (2006) MR2245727
  2. Muriefah, F. S. Abu, Arif, S. A., The Diophantine equation x 2 + 5 2 k + 1 = y n , Indian J. Pure Appl. Math., 30, 1999, 229-231, (1999) MR1686079
  3. Muriefah, F. S. Abu, Luca, F., Togbé, A., On the Diophantine equation x 2 + 5 a · 13 b = y n , Glasgow Math. J., 50, 2006, 175-181, (2006) 
  4. Arif, S. A., Abu Muriefah, F. S., 10.1017/S0004972700031580, Bull. Austral. Math. Soc., 57, 1998, 189-198, (1998) Zbl0905.11018MR1617359DOI10.1017/S0004972700031580
  5. Arif, S. A., Abu Muriefah, F. S., 10.1155/S0161171297000409, Int. J. Math. Math. Sci., 20, 1997, 299-304, (1997) MR1444731DOI10.1155/S0161171297000409
  6. Arif, S. A., Abu Muriefah, F. S., 10.1155/S0161171298000866, Int. J. Math. Math. Sci., 21, 1998, 619-620, (1998) MR1620327DOI10.1155/S0161171298000866
  7. Arif, S. A., Abu Muriefah, F. S., 10.1006/jnth.2001.2750, J. Number Theory, 95, 2002, 95-100, (2002) Zbl1037.11021MR1916082DOI10.1006/jnth.2001.2750
  8. Bérczes, A., Brindza, B., Hajdu, L., On power values of polynomials, Publ. Math. Debrecen, 53, 1998, 375-381, (1998) MR1657483
  9. Bérczes, A., Pink, I., On the diophantine equation x 2 + p 2 k = y n , Archiv der Mathematik, 91, 2008, 505-517, (2008) Zbl1175.11018MR2465869
  10. Bérczes, A., Pink, I., On the diophantine equation x 2 + p 2 l + 1 = y n , Glasgow Math. Journal, 54, 2012, 415-428, (2012) MR2911379
  11. Bilu, Yu., Hanrot, G., Voutier, P., Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte), J. Reine Angew. Math., 539, 2001, 75-122, (2001) Zbl0995.11010MR1863855
  12. Bugeaud, Y., Muriefah, F. S. Abu, The Diophantine equation x 2 + c = y n : a brief overview, Revista Colombiana de Matematicas, 40, 2006, 31-37, (2006) MR2286850
  13. Bugeaud, Y., Mignotte, M., Siksek, S., 10.1112/S0010437X05001739, Compositio Math., 142, 2006, 31-62, (2006) Zbl1128.11013MR2196761DOI10.1112/S0010437X05001739
  14. Cangül, I. N., Demirci, M., Inam, I., Luca, F., Soydan, G., On the Diophantine equation x 2 + 2 a · 3 b · 11 c = y n , Accepted to appear in Math. Slovaca. 
  15. Cangü, I. N., Demirci, M., Luca, F., Pintér, A., Soydan, G., On the Diophantine equation x 2 + 2 a · 11 b = y n , Fibonacci Quart., 48, 2010, 39-46, (2010) MR2663418
  16. Cangül, I. N., Demirci, M., Soydan, G., Tzanakis, N., The Diophantine equation x 2 + 5 a · 11 b = y n , Funct. Approx. Comment. Math, 43, 2010, 209-225, (2010) Zbl1237.11019MR2767170
  17. Cannon, J., Playoust, C., MAGMA: a new computer algebra system, Euromath Bull., 2, 1, 1996, 113-144, (1996) MR1413180
  18. Goins, E., Luca, F., Togbé, A., On the Diophantine equation x 2 + 2 α 5 β 13 γ = y n , Algorithmic number theory, Lecture Notes in Computer Science, 5011/2008, 2008, 430-442, (2008) Zbl1232.11130MR2467863
  19. Ko, C., On the Diophantine equation x 2 = y n + 1 , x y 0 , Sci. Sinica, 14, 1965, 457-460, (1965) MR0183684
  20. Le, M., 10.1017/S0004972700019717, Bull. Austral. Math. Soc., 64, 2001, 99-105, (2001) Zbl0981.11013MR1848082DOI10.1017/S0004972700019717
  21. Le, M., On Cohn’s conjecture concerning the Diophantine x 2 + 2 m = y n , Arch. Math. (Basel), 78, 2002, 26-35, (2002) MR1887313
  22. Le, M., Zhu, H., 10.1016/j.jnt.2010.09.009, Journal of Number Theory, 131/3, 2011, 458-469, (2011) Zbl1219.11059MR2739046DOI10.1016/j.jnt.2010.09.009
  23. Lebesgue, V. A., Sur l’impossibilité en nombres entiers de l’equation x m = y 2 + 1 , Nouv. Annal. des Math., 9, 1850, 178-181, (1850) 
  24. Luca, F., 10.1017/S0004972700022231, Bull. Austral. Math. Soc., 61, 2000, 241-246, (2000) Zbl0997.11027MR1748703DOI10.1017/S0004972700022231
  25. Luca, F., On the Diophantine equation x 2 + 2 a · 3 b = y n , Int. J. Math. Math. Sci., 29, 2002, 239-244, (2002) 
  26. Luca, F., Togbé, A., On the Diophantine equation x 2 + 2 a · 5 b = y n , Int. J. Number Theory, 4, 2008, 973-979, (2008) Zbl1231.11041MR2483306
  27. Luca, F., Togbé, A., On the Diophantine equation x 2 + 7 2 k = y n , Fibonacci Quart., 54, 4, 2007, 322-326, (2007) Zbl1221.11091MR2478616
  28. Pink, I., Rábai, Zs., On the Diophantine equation x 2 + 5 k 17 l = y n , Commun. Math., 19, 2011, 1-9, (2011) MR2855388
  29. Saradha, N., Srinivasan, A., 10.1016/S0019-3577(06)80009-1, Indag. Math. (N.S.), 17/1, 2006, 103-114, (2006) Zbl1110.11012MR2337167DOI10.1016/S0019-3577(06)80009-1
  30. Saradha, N., Srinivasan, A., Solutions of some generalized Ramanujan-Nagell equations via binary quadratic forms, Publ. Math. Debrecen, 71/3-4, 2007, 349-374, (2007) Zbl1164.11020MR2361718
  31. Schinzel, A., Tijdeman, R., On the equation y m = P ( x ) , Acta Arith., 31, 1976, 199-204, (1976) MR0422150
  32. Shorey, T. N., Tijdeman, R., Exponential Diophantine equations, Cambridge Tracts in Mathematics, 1986, 87. Cambridge University Press, Cambridge, x+240 pp.. (1986) MR0891406
  33. Tengely, Sz., On the Diophantine equation x 2 + a 2 = 2 y p , Indag. Math. (N.S.), 15, 2004, 291-304, (2004) MR2071862

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.