On the diophantine equation x 2 + 5 k 17 l = y n

István Pink; Zsolt Rábai

Communications in Mathematics (2011)

  • Volume: 19, Issue: 1, page 1-9
  • ISSN: 1804-1388

Abstract

top
Consider the equation in the title in unknown integers ( x , y , k , l , n ) with x 1 , y > 1 , n 3 , k 0 , l 0 and gcd ( x , y ) = 1 . Under the above conditions we give all solutions of the title equation (see Theorem 1).

How to cite

top

Pink, István, and Rábai, Zsolt. "On the diophantine equation $x^2+5^k17^l=y^n$." Communications in Mathematics 19.1 (2011): 1-9. <http://eudml.org/doc/196718>.

@article{Pink2011,
abstract = {Consider the equation in the title in unknown integers $(x,y,k,l,n)$ with $x \ge 1$, $y >1$, $n \ge 3$, $k \ge 0$, $l \ge 0$ and $\gcd (x,y)=1$. Under the above conditions we give all solutions of the title equation (see Theorem 1).},
author = {Pink, István, Rábai, Zsolt},
journal = {Communications in Mathematics},
keywords = {exponential diophantine equations; primitive divisors; exponential Diophantine equation; generalized Ramanujan-Nagell equation; primitive divisors; -integral points; MAGMA},
language = {eng},
number = {1},
pages = {1-9},
publisher = {University of Ostrava},
title = {On the diophantine equation $x^2+5^k17^l=y^n$},
url = {http://eudml.org/doc/196718},
volume = {19},
year = {2011},
}

TY - JOUR
AU - Pink, István
AU - Rábai, Zsolt
TI - On the diophantine equation $x^2+5^k17^l=y^n$
JO - Communications in Mathematics
PY - 2011
PB - University of Ostrava
VL - 19
IS - 1
SP - 1
EP - 9
AB - Consider the equation in the title in unknown integers $(x,y,k,l,n)$ with $x \ge 1$, $y >1$, $n \ge 3$, $k \ge 0$, $l \ge 0$ and $\gcd (x,y)=1$. Under the above conditions we give all solutions of the title equation (see Theorem 1).
LA - eng
KW - exponential diophantine equations; primitive divisors; exponential Diophantine equation; generalized Ramanujan-Nagell equation; primitive divisors; -integral points; MAGMA
UR - http://eudml.org/doc/196718
ER -

References

top
  1. Muriefah, F.S.A., On the Diophantine equation x 2 + 5 2 k = y n , Demonstratio Mathematica 319/2 2006 285–289 (2006) Zbl1100.11013
  2. Arif, S.A., Muriefah, F.S.A., 10.1155/S0161171297000409, Internat. J. Math. Math. Sci. 20 1997 299–304 (1997) MR1444731DOI10.1155/S0161171297000409
  3. Arif, S.A., Muriefah, F.S.A., 10.1155/S0161171298000866, Internat. J. Math. Math. Sci. 21 1998 619–620 (1998) MR1620327DOI10.1155/S0161171298000866
  4. Arif, S.A., Muriefah, F.S.A., The Diophantine equation x 2 + q 2 k = y n , Arab. J. Sci. Sect. A Sci. 26 2001 53–62 (2001) MR1829921
  5. Arif, S.A., Muriefah, F.S.A., On the Diophantine equation x 2 + 2 k = y n II, Arab J. Math. Sci. 7 2001 67–71 (2001) Zbl1010.11021MR1940290
  6. Arif, S.A., Muriefah, F.S.A., 10.1006/jnth.2001.2750, J. Number Theory 95 2002 95–100 (2002) Zbl1037.11021MR1916082DOI10.1006/jnth.2001.2750
  7. Bennett, M.A., Ellenberg, J.S., Ng, Nathan C., The Diophantine equation A 4 + 2 d B 2 = C n , submitted 
  8. Bennett, M.A., Skinner, C.M., 10.4153/CJM-2004-002-2, Canad. J. Math. 56/1 2004 23–54 (2004) Zbl1053.11025MR2031121DOI10.4153/CJM-2004-002-2
  9. Bérczes, A., Brindza, B., Hajdu, L., On power values of polynomials, Publ. Math. Debrecen 53 1998 375–381 (1998) MR1657483
  10. Bérczes, A., Pink, I., On the diophantine equation x 2 + p 2 k = y n , Archiv der Mathematik 91 2008 505–517 (2008) Zbl1175.11018MR2465869
  11. Bilu, Y., Hanrot, G., Voutier, P.M., Existence of primitive divisors of Lucas and Lehmer numbers. With an appendix by M. Mignotte, J. Reine Angew. Math. 539 2001 75–122 (2001) Zbl0995.11010MR1863855
  12. Bugeaud, Y., On the diophantine equation x 2 - p m = ± y n , Acta Arith. 80 1997 213–223 (1997) MR1451409
  13. Bugeaud, Y., Mignotte, M., Siksek, S., 10.1112/S0010437X05001739, Compos. Math. 142/1 2006 31–62 (2006) MR2196761DOI10.1112/S0010437X05001739
  14. Bugeaud, Y., Muriefah, F.S. Abu, The Diophantine equation x 2 + c = y n : a brief overview, Revista Colombiana de Matematicas 40 2006 31–37 (2006) MR2286850
  15. Bugeaud, Y., Shorey, T.N., On the number of solutions of the generalized Ramanujan-Nagell equation, J. reine angew. Math. 539 2001 55–74 (2001) Zbl0995.11027MR1863854
  16. Cangül, I.N., Demirci, M., Soydan, G., Tzanakis, N., On the Diophantine equation x 2 + 5 a 11 b = y n , Funct. Approx. Comment. Math. 43 2010 209–225 (2010) MR2767170
  17. Cangül, N., Demirci, M., Luca, F., Pintér, Á., Soydan, G., On the Diophantine equation x 2 + 2 a 11 b = y n , Fibonacci Quart. 48 2010 39–46 (2010) MR2663418
  18. Carmichael, R.D., On the numerical factors of the arithmetic forms α n ± β n , Ann. Math. (2) 15 1913 30–70 (1913) MR1502458
  19. Cohn, J.H.E., 10.1155/S0161171299224593, Int. J. Math. Math. Sci. 22 1999 459–462 (1999) MR1717165DOI10.1155/S0161171299224593
  20. Cohn, J.H.E., 10.1007/BF01197049, Arch. Math (Basel) 59 1992 341–344 (1992) MR1179459DOI10.1007/BF01197049
  21. Cohn, J.H.E., The diophantine equation x 2 + C = y n , Acta Arith. 65 1993 367–381 (1993) MR1259344
  22. Cohn, J.H.E., 10.4064/aa109-2-8, Acta Arith. 109 2003 205–206 (2003) Zbl1050.11038MR1980647DOI10.4064/aa109-2-8
  23. Ellenberg, J.S., Galois representations to -curves and the generalized Fermat Equation A 4 + B 2 = C p , Amer. J. Math. 126 (4) 2004 763–787 (2004) MR2075481
  24. Goins, E., Luca, F., Togbe, A., On the Diophantine Equation x 2 + 2 α 5 β 13 γ = y n , , A.J. van der Poorten, A. Stein (eds.)ANTS VIII Proceedings ANTS VIII, Lecture Notes in Computer Science 5011 2008 430–432 (2008) Zbl1232.11130MR2467863
  25. Győry, K., Pink, I., Pintér, Á., Power values of polynomials and binomial Thue-Mahler equations, Publ. Math. Debrecen 65 2004 341–362 (2004) Zbl1064.11025MR2107952
  26. Le, M., On Cohn’s conjecture concerning the diophantine equation x 2 + 2 m = y n , Arch. Math. Basel 78/1 2002 26–35 (2002) Zbl1006.11013MR1887313
  27. Le, M., On the diophantine equation x 2 + p 2 = y n , Publ. Math. Debrecen 63 2003 27–78 (2003) Zbl1027.11025MR1990864
  28. Lebesgue, V.A., Sur l’impossibilité en nombres entier de l’equation x m = y 2 + 1 , Nouvelle Annales des Mathématiques (1) 9 1850 178–181 (1850) 
  29. Ljunggren, W., Über einige Arcustangensgleichungen die auf interessante unbestimmte Gleichungen führen, Ark. Mat. Astr. Fys. 29A 1943 No. 13 (1943) Zbl0028.10904MR0012090
  30. Ljunggren, W., 10.2140/pjm.1964.14.585, Pacific J. Math. 14 1964 585–596 (1964) MR0161831DOI10.2140/pjm.1964.14.585
  31. Luca, F., 10.1017/S0004972700022231, Bull. Austral. Math. Soc. 61 2000 241–246 (2000) Zbl0997.11027MR1748703DOI10.1017/S0004972700022231
  32. Luca, F., 10.1155/S0161171202004696, Int. J. Math. Sci. 29 2002 239–244 (2002) MR1897992DOI10.1155/S0161171202004696
  33. Luca, F., Togbe, A., On the Diophantine equation x 2 + 7 2 k = y n , Fibonacci Quarterly 54 2007 322–326 (2007) Zbl1221.11091MR2478616
  34. Luca, F., Togbe, A., 10.1142/S1793042108001791, Int. J. Number Theory 4 6 2008 973–979 (2008) MR2483306DOI10.1142/S1793042108001791
  35. Mignotte, M., Weger, B.M.M de, On the equations x 2 + 74 = y 5 and x 2 + 86 = y 5 , Glasgow Math. J. 38/1 1996 77–85 (1996) MR1373962
  36. Mollin, R.A., Quadratics, CRC Press, New York 1996 (1996) Zbl0888.11041MR1383823
  37. Mordell, L.J., Diophantine Equations, Academic Press 1969 (1969) Zbl0188.34503MR0249355
  38. Muriefah, F.S.A., Luca, F., Togbe, A., On the diophantine equation x 2 + 5 a 13 b = y n , Glasgow Math. J. 50 2008 175–181 (2008) MR2381741
  39. Nagell, T., Sur l’impossibilité de quelques équations a deux indeterminées, Norsk. Mat. Forensings Skifter 13 1923 65–82 (1923) 
  40. Nagell, T., Contributions to the theory of a category of diophantine equations of the second degree with two unknowns, Nova Acta Reg. Soc. Upsal. IV Ser. 16, Uppsala 1955 1–38 (1955) MR0070645
  41. Pink, I., On the diophantine equation x 2 + 2 α 3 β 5 γ 7 δ = y n , Publ. Math. Debrecen 70/1–2 2007 149–166 (2007) Zbl1121.11028MR2288472
  42. Ribenboim, P., The little book of big primes, Springer-Verlag 1991 (1991) Zbl0734.11001MR1118843
  43. Saradha, N., Srinivasan, A., 10.1016/S0019-3577(06)80009-1, Indag. Math. (N.S.) 17/1 2006 103–114 (2006) Zbl1110.11012MR2337167DOI10.1016/S0019-3577(06)80009-1
  44. Saradha, N., Srinivasan, A., Solutions of some generalized Ramanujan-Nagell equations via binary quadratic forms, Publ. Math. Debrecen 71/3–4 2007 349–374 (2007) Zbl1164.11020MR2361718
  45. Schinzel, A., Tijdeman, R., On the equation y m = P ( x ) , Acta Arith. 31 1976 199–204 (1976) MR0422150
  46. Shorey, T.N., van der Poorten, A.J., Tijdemann, R., Schinzel, A., Applications of the Gel’fond-Baker method to Diophantine equations, , Transcendence Theory: Advances and Applications Academic Press, London-New York, San Francisco 1977 59–77 (1977) 
  47. Shorey, T.N., Tijdeman, R., Exponential Diophantine equations, Cambridge Tracts in Mathematics, 87. Cambridge University Press, Cambridge 1986 x+240 pp. (1986) Zbl0606.10011MR0891406
  48. Tengely, Sz., On the Diophantine equation x 2 + a 2 = 2 y p , Indag. Math. (N.S.) 15 2004 291–304 (2004) MR2071862
  49. Voutier, P.M., 10.1090/S0025-5718-1995-1284673-6, Math. Comp. 64 1995 869–888 (1995) Zbl0832.11009MR1284673DOI10.1090/S0025-5718-1995-1284673-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.