Local reflexion spaces

Jan Gregorovič

Archivum Mathematicum (2012)

  • Volume: 048, Issue: 5, page 323-332
  • ISSN: 0044-8753

Abstract

top
A reflexion space is generalization of a symmetric space introduced by O. Loos in [4]. We generalize locally symmetric spaces to local reflexion spaces in the similar way. We investigate, when local reflexion spaces are equivalently given by a locally flat Cartan connection of certain type.

How to cite

top

Gregorovič, Jan. "Local reflexion spaces." Archivum Mathematicum 048.5 (2012): 323-332. <http://eudml.org/doc/251388>.

@article{Gregorovič2012,
abstract = {A reflexion space is generalization of a symmetric space introduced by O. Loos in [4]. We generalize locally symmetric spaces to local reflexion spaces in the similar way. We investigate, when local reflexion spaces are equivalently given by a locally flat Cartan connection of certain type.},
author = {Gregorovič, Jan},
journal = {Archivum Mathematicum},
keywords = {local reflexion space; flat Cartan geometry; local infinitesimal automorphisms; local reflexion space; flat Cartan geometry; local infinitesimal automorphisms},
language = {eng},
number = {5},
pages = {323-332},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Local reflexion spaces},
url = {http://eudml.org/doc/251388},
volume = {048},
year = {2012},
}

TY - JOUR
AU - Gregorovič, Jan
TI - Local reflexion spaces
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 5
SP - 323
EP - 332
AB - A reflexion space is generalization of a symmetric space introduced by O. Loos in [4]. We generalize locally symmetric spaces to local reflexion spaces in the similar way. We investigate, when local reflexion spaces are equivalently given by a locally flat Cartan connection of certain type.
LA - eng
KW - local reflexion space; flat Cartan geometry; local infinitesimal automorphisms; local reflexion space; flat Cartan geometry; local infinitesimal automorphisms
UR - http://eudml.org/doc/251388
ER -

References

top
  1. Alekseevsky, D. V., Michor, P. W., 10.1016/0926-2245(95)00023-2, Differential Geom. Appl. 5 (1995), 371–403. (1995) MR1362865DOI10.1016/0926-2245(95)00023-2
  2. Čap, A., Slovák, J., Parabolic Geometries I: Background and General Theory, Math. Surveys Monogr. 154 (2009). (2009) Zbl1183.53002MR2532439
  3. Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer Verlag, Berlin–Heidelberg, 1993. (1993) MR1202431
  4. Loos, O., 10.1007/BF01123745, Math. Z. 99 (1967), 141–170. (1967) Zbl0148.17403MR0212742DOI10.1007/BF01123745
  5. Loos, O., 10.1007/BF02999694, Abh. Math. Sem. Univ. Hamburg 37 (1972), 160–179. (1972) Zbl0239.55018MR0307124DOI10.1007/BF02999694
  6. Sharpe, R. W., Differential Geometry, Cartan’s Generalization of Klein’s Erlangen Program, Springer Verlag, New York, 1997. (1997) Zbl0876.53001MR1453120

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.