Efficient algorithm to solve optimal boundary control problem for Burgers' equation

Alaeddin Malek; Roghayeh Ebrahim Nataj; Mohamad Javad Yazdanpanah

Kybernetika (2012)

  • Volume: 48, Issue: 6, page 1250-1265
  • ISSN: 0023-5954

Abstract

top
In this paper, we propose a novel algorithm for solving an optimal boundary control problem of the Burgers' equation. The solving method is based on the transformation of the original problem into a homogeneous boundary conditions problem. This transforms the original problem into an optimal distributed control problem. The modal expansion technique is applied to the distributed control problem of the Burgers' equation to generate a low-dimensional dynamical system. The control parametrization method is formulated for approximating the time-varying control by a finite term of the orthogonal functions with unknown coefficients determined through an optimization process. The minimization of the objective functional is performed by using a conjugate gradient method. The accuracy and convergent rate of this hybrid method are shown by some numerical examples .

How to cite

top

Malek, Alaeddin, Nataj, Roghayeh Ebrahim, and Yazdanpanah, Mohamad Javad. "Efficient algorithm to solve optimal boundary control problem for Burgers' equation." Kybernetika 48.6 (2012): 1250-1265. <http://eudml.org/doc/251389>.

@article{Malek2012,
abstract = {In this paper, we propose a novel algorithm for solving an optimal boundary control problem of the Burgers' equation. The solving method is based on the transformation of the original problem into a homogeneous boundary conditions problem. This transforms the original problem into an optimal distributed control problem. The modal expansion technique is applied to the distributed control problem of the Burgers' equation to generate a low-dimensional dynamical system. The control parametrization method is formulated for approximating the time-varying control by a finite term of the orthogonal functions with unknown coefficients determined through an optimization process. The minimization of the objective functional is performed by using a conjugate gradient method. The accuracy and convergent rate of this hybrid method are shown by some numerical examples .},
author = {Malek, Alaeddin, Nataj, Roghayeh Ebrahim, Yazdanpanah, Mohamad Javad},
journal = {Kybernetika},
keywords = {optimal boundary control; Burgers' equation; conjugate gradient method; modal expansion technique; control parametrization; optimal boundary control; Burgers' equation; conjugate gradient method; modal expansion technique; control parametrization},
language = {eng},
number = {6},
pages = {1250-1265},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Efficient algorithm to solve optimal boundary control problem for Burgers' equation},
url = {http://eudml.org/doc/251389},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Malek, Alaeddin
AU - Nataj, Roghayeh Ebrahim
AU - Yazdanpanah, Mohamad Javad
TI - Efficient algorithm to solve optimal boundary control problem for Burgers' equation
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 6
SP - 1250
EP - 1265
AB - In this paper, we propose a novel algorithm for solving an optimal boundary control problem of the Burgers' equation. The solving method is based on the transformation of the original problem into a homogeneous boundary conditions problem. This transforms the original problem into an optimal distributed control problem. The modal expansion technique is applied to the distributed control problem of the Burgers' equation to generate a low-dimensional dynamical system. The control parametrization method is formulated for approximating the time-varying control by a finite term of the orthogonal functions with unknown coefficients determined through an optimization process. The minimization of the objective functional is performed by using a conjugate gradient method. The accuracy and convergent rate of this hybrid method are shown by some numerical examples .
LA - eng
KW - optimal boundary control; Burgers' equation; conjugate gradient method; modal expansion technique; control parametrization; optimal boundary control; Burgers' equation; conjugate gradient method; modal expansion technique; control parametrization
UR - http://eudml.org/doc/251389
ER -

References

top
  1. Baker, J., Armaou, A., Christofides, P. D., 10.1006/jmaa.2000.6994, J. Math. Anal. Appl. 252 (2000), 230-255. Zbl1011.76018MR1797854DOI10.1006/jmaa.2000.6994
  2. Balas, M. J., 10.1007/BF00932903, J. Optim. Theory 259 (1978), 415-436. Zbl0362.93008MR0508106DOI10.1007/BF00932903
  3. Burgers, J. M., 10.1016/S0065-2156(08)70100-5, Adv. in Appl. Mech. 1 (1948), 171. MR0027195DOI10.1016/S0065-2156(08)70100-5
  4. Chang, Y., Lee, T., 10.1080/00207178608933538, Internat. J. Control 43 (1986), 4, 1283-1304. Zbl0592.93027DOI10.1080/00207178608933538
  5. Cole, J. D., On quasi-linear parabolic equation occurring in aerodynamics., Quart. Appl. Math. 9 (1951), 225-236. MR0042889
  6. Curtain, R. F., Pritchard, A. J., Functional Analysis in Modern Applied Mathematics., Academic Press, New York 1977. Zbl0448.46002MR0479787
  7. Dean, E. J., Gubernatis, P., 10.1016/0898-1221(91)90186-8, Comput. Math. Appl. 22 (1991), 7, 93-100. Zbl0829.65090MR1128889DOI10.1016/0898-1221(91)90186-8
  8. Dormand, J. R., Prince, P. J., 10.1016/0771-050X(80)90013-3, J. Comput. Appl. Math. 6 (1980), 19-26. Zbl0448.65045MR0568599DOI10.1016/0771-050X(80)90013-3
  9. Endow, Y., 10.1109/9.29410, IEEE Trans. Automat. Control 34 (1989), 7, 770-773. Zbl0687.49025MR1000674DOI10.1109/9.29410
  10. Fletcher, R., Reeves, C. M., 10.1093/comjnl/7.2.149, Comput. J. 7 (1964), 144-160. Zbl0132.11701MR0187375DOI10.1093/comjnl/7.2.149
  11. Guerrero, S., Imanuvilov, O. Yu., 10.1016/j.anihpc.2006.06.010, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), 897-906. Zbl1248.93024MR2371111DOI10.1016/j.anihpc.2006.06.010
  12. Heidari, H., Malek, A., Optimal boundary control for hyperdiffusion equation., Kybernetica 46 (2010), 5, 907-925. Zbl1206.35138MR2778921
  13. King, B. B., Kruger, D. A., Burgers' equation: Galerkin least squares approximation and feedback control., Math, Comput. Modeling 38 (2003), 1078-1085. MR2017976
  14. Kucuk, I., Sadek, I., 10.1016/j.amc.2008.12.056, Appl. Math. Comput. 210 (2009), 126-135. Zbl1162.65037MR2504127DOI10.1016/j.amc.2008.12.056
  15. Lellouche, J. M., Devenon, J. L., Dekeyser, I., 10.1016/0898-1221(94)00138-3, Comput. Math. Appl. 28 (1994), 33-44. MR1287503DOI10.1016/0898-1221(94)00138-3
  16. Leredde, Y., Lellouche, J. M., Devenon, J. L., Dekeyser, I., 10.1002/(SICI)1097-0363(19980715)28:1<113::AID-FLD702>3.0.CO;2-1, Internat. J. Numer. Meth. Fluids 28 (1998), 113-128. MR1635880DOI10.1002/(SICI)1097-0363(19980715)28:1<113::AID-FLD702>3.0.CO;2-1
  17. Morton, K. W., Mayers, D. F., Numerical Solution of Partial Differential Equations, An Introduction., Cambridge University Press 2005. Zbl1126.65077MR2153063
  18. Naylor, A. W., Sell, G. R., 10.1007/978-1-4612-5773-8, Appl. Math. Sci. 40, Springer-Verlag, New York 1982. MR0672108DOI10.1007/978-1-4612-5773-8
  19. Park, H. M., Lee, M. W., Jang, Y. D., 10.1016/S0045-7825(98)00092-9, Comput. Methods Appl. Mech. Engrg. 166 (1998), 289-308. MR1659187DOI10.1016/S0045-7825(98)00092-9
  20. Sadek, I. S., Feng, J., 10.1016/0895-7177(93)90057-6, Math. Comput. Modelling 187 (1993), 41-58. Zbl0805.49023MR1248295DOI10.1016/0895-7177(93)90057-6
  21. Sirisena, H. R., Chou, F. S., 10.1002/oca.4660020307, Optimal Control Appl. Methods 2 (1981), 289-298. Zbl0476.49022MR0630156DOI10.1002/oca.4660020307

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.