Optimal control solution for Pennes' equation using strongly continuous semigroup
Kybernetika (2014)
- Volume: 50, Issue: 4, page 530-543
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topReferences
top- Aghayan, S. A., Sardari, D., Mahdavi, S. R. M., Zahmatkesh, M. H., An inverse problem of temperature optimization in hyperthermia by controlling the overall heat transfer coefficient., Hindawi Publishing Corporation J. Appl. Math. 2013 (2013), 1-9. MR3090615
- Curtain, R. F., Zwart, H., An Introduction to Infinite-Dimensional Linear Systems Theory., Springer-Verlag 21 of Text in Applied Mathematics, 1995. Zbl0839.93001MR1351248
- Cheng, K. S., Stakhursky, V., Craciunescu, O. I., Stauffer, P., Dewhirst, M., Das, S. K., 10.1088/0031-9155/53/6/008, Physics in Medicine and Biology 53 (2008), 6, 1619-1635. DOI10.1088/0031-9155/53/6/008
- Deng, Z. S., Liu, J., Analytical Solutions to 3D Bioheat Transfer Problems with or without Phase Change., In: Heat Transfer Phenomena and Applications (S. N. Kazi, ed.), Chapter 8, InTech, 2012.
- Deng, Z. S., Liu, J., 10.1115/1.1516810, J. Biomech. Eng. 124 (2002), 638-649. DOI10.1115/1.1516810
- Dhar, R., Dhar, P., Dhar, R., Problem on optimal distribution of induced microwave by heating probe at tumour site in hyperthermia., Adv. Model. Optim. 13 (2011), 1, 39-48. MR2889921
- Dhar, P., Dhar, R., Dhar, R., An optimal control problem on temperature distribution in tissue by induced microwave., Adv. Appl. Math. Biosciences 2 (2011), 1, 27-38.
- Dhar, P., Dhar, R., 10.1007/s10483-010-0413-x, Springer J. Appl. Math. Mech. 31 (2010), 4, 529-534. Zbl1205.49004MR2647997DOI10.1007/s10483-010-0413-x
- Gomberoff, A., Hojman, S. A., 10.1088/0305-4470/30/14/018, J. Phys. A: Math. Gen. 30 (1997), 14, 5077-5084. Zbl0939.70020MR1478610DOI10.1088/0305-4470/30/14/018
- Heidari, H., Malek, A., Optimal boundary control for hyperdiffusion equation., Kybernetika 46 (2010), 5, 907-925. Zbl1206.35138MR2778921
- Heidari, H., Zwart, H., Malek, A., Controllability and Stability of 3D Heat Conduction Equation in a Submicroscale Thin Film., Department of Applied Mathematics, University of Twente, Enschede 2010, pp. 1-21.
- Karaa, S., Zhang, J., Yang, F., 10.1016/j.matcom.2005.02.032, Math. Comput. Simul. 68 (2005), 4, 375-388. Zbl1062.92018MR2141455DOI10.1016/j.matcom.2005.02.032
- Loulou, T., Scott, E. P., 10.1080/10407780290059756, Numer. Heat Transfer, Part A 42 (2002), 7, 661-683. DOI10.1080/10407780290059756
- Malek, A., Bojdi, Z., Golbarg, P., 10.1115/1.4006271, J. Heat Transfer 134 (2012), 9, 094501-094506. DOI10.1115/1.4006271
- Malek, A., Nataj, R. Ebrahim, Yazdanpanah, M. J., Efficient algorithm to solve optimal boundary control problem for Burgers' equation., Kybernetika 48 (2012), 6, 1250-1265. MR3052884
- Malek, A., Momeni-Masuleh, S. H., 10.1016/j.cam.2007.06.023, J. Comput. Appl. Math. 217 (2008), 1, 137-147. Zbl1148.65082MR2427436DOI10.1016/j.cam.2007.06.023
- Momeni-Masuleh, S. H., Malek, A., 10.1002/num.20214, Numer. Methods Partial Differential Equations 23 (2007), 5, 1139-1148. MR2340665DOI10.1002/num.20214