Yamabe operator via BGG sequences
Archivum Mathematicum (2012)
- Volume: 048, Issue: 5, page 411-422
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topTuček, Vít. "Yamabe operator via BGG sequences." Archivum Mathematicum 048.5 (2012): 411-422. <http://eudml.org/doc/251390>.
@article{Tuček2012,
abstract = {We show that the conformally invariant Yamabe operator on a complex conformal manifold can be constructed as a first BGG operator by inducing from certain infinite-dimensional representation.},
author = {Tuček, Vít},
journal = {Archivum Mathematicum},
keywords = {Bernstein-Gelfand-Gelfand resolution; Cartan connection; parabolic geometry; Yamabe operator; Bernstein-Gelfand-Gelfand resolution; Cartan connection; parabolic geometry; Yamabe operator},
language = {eng},
number = {5},
pages = {411-422},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Yamabe operator via BGG sequences},
url = {http://eudml.org/doc/251390},
volume = {048},
year = {2012},
}
TY - JOUR
AU - Tuček, Vít
TI - Yamabe operator via BGG sequences
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 5
SP - 411
EP - 422
AB - We show that the conformally invariant Yamabe operator on a complex conformal manifold can be constructed as a first BGG operator by inducing from certain infinite-dimensional representation.
LA - eng
KW - Bernstein-Gelfand-Gelfand resolution; Cartan connection; parabolic geometry; Yamabe operator; Bernstein-Gelfand-Gelfand resolution; Cartan connection; parabolic geometry; Yamabe operator
UR - http://eudml.org/doc/251390
ER -
References
top- Calderbank, D. M. J., Diemer, T., Differential invariants and curved Bernstein–Gelfand–Gelfand sequences, J. Reine Angew. Math. 537 (2001), 67–103. (2001) Zbl0985.58002MR1856258
- Cap, A., Gover, A. R, Hammerl, M., Projective BGG equations, algebraic sets, and compactifications of Einstein geometries, arXiv:1005.2246, May 2010.
- Čap, A., Slovák, J., Parabolic geometries. I, Math. Surveys Monogr., American Mathematical Society, 2009. (2009) Zbl1183.53002MR2532439
- Čap, A., Slovák, J., Souček, V., 10.2307/3062111, Ann. of Math. (2) 154 (1) (2001), 97–113. (2001) Zbl1159.58309MR1847589DOI10.2307/3062111
- Davidson, M. G., Enright, T. J., Stanke, R. J., Differential operators and highest weight representations, Mem. Amer. Math. Soc. 94 (455) (1991), iv+102. (1991) Zbl0759.22015MR1081660
- Enright, T., Howe, R., Wallach, N., A classification of unitary highest weight modules, Representation theory of reductive groups (Park City, Utah, 1982), Birkhäuser Boston, 1983. (1983) Zbl0535.22012MR0733809
- Enright, T. J., Analogues of Kostant’s –cohomology formulas for unitary highest weight modules, 392 (1988), 27–36. (1988) MR0965055
- Gover, A. R., Hirachi, K., 10.1090/S0894-0347-04-00450-3, J. Amer. Math. Soc. 17 (2004), 389–405. (2004) Zbl1066.53037MR2051616DOI10.1090/S0894-0347-04-00450-3
- Graham, C. R., 10.1112/jlms/s2-46.3.566, J. London Math. Soc. (2) 46 (3) (1992), 566–576. (1992) Zbl0726.53011MR1190439DOI10.1112/jlms/s2-46.3.566
- Huang, Jing–Song, Pandžič, P., Renard, D., 10.1090/S1088-4165-06-00267-6, Represent. Theory 10 (2006), 299–313. (2006) Zbl1134.22011MR2240703DOI10.1090/S1088-4165-06-00267-6
- Kostant, B., 10.2307/1970237, Ann. of Math. (2) 74 (1961), 329–387. (1961) Zbl0134.03501MR0142696DOI10.2307/1970237
- Pandžič, P., Dirac operators on Weil representations II, Math. Commun. 15 (2) (2010), 411–424. (2010) Zbl1207.22009MR2814264
- Vogan, D. A., Jr.,, Unitary representations and complex analysis, Representation theory and complex analysis, Lecture Notes in Math., vol. 1931, Springer, Berlin, 2008, pp. 259–344. (2008) Zbl1143.22002MR2409701
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.