Yamabe operator via BGG sequences

Vít Tuček

Archivum Mathematicum (2012)

  • Volume: 048, Issue: 5, page 411-422
  • ISSN: 0044-8753

Abstract

top
We show that the conformally invariant Yamabe operator on a complex conformal manifold can be constructed as a first BGG operator by inducing from certain infinite-dimensional representation.

How to cite

top

Tuček, Vít. "Yamabe operator via BGG sequences." Archivum Mathematicum 048.5 (2012): 411-422. <http://eudml.org/doc/251390>.

@article{Tuček2012,
abstract = {We show that the conformally invariant Yamabe operator on a complex conformal manifold can be constructed as a first BGG operator by inducing from certain infinite-dimensional representation.},
author = {Tuček, Vít},
journal = {Archivum Mathematicum},
keywords = {Bernstein-Gelfand-Gelfand resolution; Cartan connection; parabolic geometry; Yamabe operator; Bernstein-Gelfand-Gelfand resolution; Cartan connection; parabolic geometry; Yamabe operator},
language = {eng},
number = {5},
pages = {411-422},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Yamabe operator via BGG sequences},
url = {http://eudml.org/doc/251390},
volume = {048},
year = {2012},
}

TY - JOUR
AU - Tuček, Vít
TI - Yamabe operator via BGG sequences
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 5
SP - 411
EP - 422
AB - We show that the conformally invariant Yamabe operator on a complex conformal manifold can be constructed as a first BGG operator by inducing from certain infinite-dimensional representation.
LA - eng
KW - Bernstein-Gelfand-Gelfand resolution; Cartan connection; parabolic geometry; Yamabe operator; Bernstein-Gelfand-Gelfand resolution; Cartan connection; parabolic geometry; Yamabe operator
UR - http://eudml.org/doc/251390
ER -

References

top
  1. Calderbank, D. M. J., Diemer, T., Differential invariants and curved Bernstein–Gelfand–Gelfand sequences, J. Reine Angew. Math. 537 (2001), 67–103. (2001) Zbl0985.58002MR1856258
  2. Cap, A., Gover, A. R, Hammerl, M., Projective BGG equations, algebraic sets, and compactifications of Einstein geometries, arXiv:1005.2246, May 2010. 
  3. Čap, A., Slovák, J., Parabolic geometries. I, Math. Surveys Monogr., American Mathematical Society, 2009. (2009) Zbl1183.53002MR2532439
  4. Čap, A., Slovák, J., Souček, V., 10.2307/3062111, Ann. of Math. (2) 154 (1) (2001), 97–113. (2001) Zbl1159.58309MR1847589DOI10.2307/3062111
  5. Davidson, M. G., Enright, T. J., Stanke, R. J., Differential operators and highest weight representations, Mem. Amer. Math. Soc. 94 (455) (1991), iv+102. (1991) Zbl0759.22015MR1081660
  6. Enright, T., Howe, R., Wallach, N., A classification of unitary highest weight modules, Representation theory of reductive groups (Park City, Utah, 1982), Birkhäuser Boston, 1983. (1983) Zbl0535.22012MR0733809
  7. Enright, T. J., Analogues of Kostant’s 𝔲 –cohomology formulas for unitary highest weight modules, 392 (1988), 27–36. (1988) MR0965055
  8. Gover, A. R., Hirachi, K., 10.1090/S0894-0347-04-00450-3, J. Amer. Math. Soc. 17 (2004), 389–405. (2004) Zbl1066.53037MR2051616DOI10.1090/S0894-0347-04-00450-3
  9. Graham, C. R., 10.1112/jlms/s2-46.3.566, J. London Math. Soc. (2) 46 (3) (1992), 566–576. (1992) Zbl0726.53011MR1190439DOI10.1112/jlms/s2-46.3.566
  10. Huang, Jing–Song, Pandžič, P., Renard, D., 10.1090/S1088-4165-06-00267-6, Represent. Theory 10 (2006), 299–313. (2006) Zbl1134.22011MR2240703DOI10.1090/S1088-4165-06-00267-6
  11. Kostant, B., 10.2307/1970237, Ann. of Math. (2) 74 (1961), 329–387. (1961) Zbl0134.03501MR0142696DOI10.2307/1970237
  12. Pandžič, P., Dirac operators on Weil representations II, Math. Commun. 15 (2) (2010), 411–424. (2010) Zbl1207.22009MR2814264
  13. Vogan, D. A., Jr.,, Unitary representations and complex analysis, Representation theory and complex analysis, Lecture Notes in Math., vol. 1931, Springer, Berlin, 2008, pp. 259–344. (2008) Zbl1143.22002MR2409701

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.