Riemannian symmetries in flag manifolds
Archivum Mathematicum (2012)
- Volume: 048, Issue: 5, page 387-398
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topPiu, Paola, and Remm, Elisabeth. "Riemannian symmetries in flag manifolds." Archivum Mathematicum 048.5 (2012): 387-398. <http://eudml.org/doc/251409>.
@article{Piu2012,
abstract = {Flag manifolds are in general not symmetric spaces. But they are provided with a structure of $\mathbb \{Z\}_2^k$-symmetric space. We describe the Riemannian metrics adapted to this structure and some properties of reducibility. The conditions for a metric adapted to the $\mathbb \{Z\}_2^2$-symmetric structure to be naturally reductive are detailed for the flag manifold $SO(5)/SO(2)\times SO(2) \times SO(1)$.},
author = {Piu, Paola, Remm, Elisabeth},
journal = {Archivum Mathematicum},
keywords = {$\mathbb \{Z\}_2^k$-symmetric space; flag manifolds; Riemannian metrics; -symmetric space; flag manifold; Riemannian metrics},
language = {eng},
number = {5},
pages = {387-398},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Riemannian symmetries in flag manifolds},
url = {http://eudml.org/doc/251409},
volume = {048},
year = {2012},
}
TY - JOUR
AU - Piu, Paola
AU - Remm, Elisabeth
TI - Riemannian symmetries in flag manifolds
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 5
SP - 387
EP - 398
AB - Flag manifolds are in general not symmetric spaces. But they are provided with a structure of $\mathbb {Z}_2^k$-symmetric space. We describe the Riemannian metrics adapted to this structure and some properties of reducibility. The conditions for a metric adapted to the $\mathbb {Z}_2^2$-symmetric structure to be naturally reductive are detailed for the flag manifold $SO(5)/SO(2)\times SO(2) \times SO(1)$.
LA - eng
KW - $\mathbb {Z}_2^k$-symmetric space; flag manifolds; Riemannian metrics; -symmetric space; flag manifold; Riemannian metrics
UR - http://eudml.org/doc/251409
ER -
References
top- Arias–Marco, T., Kowalski, O., 10.1007/s10587-008-0014-y, Czechoslovak Math. J. 58 (1) (2008), 203–239. (2008) Zbl1174.53024MR2402535DOI10.1007/s10587-008-0014-y
- Bahturin, Y., Goze, M., 10.2140/pjm.2008.236.1, Pacific J. Math. 236 (1) (2008), 1–21. (2008) MR2398984DOI10.2140/pjm.2008.236.1
- Bouyakoub, A., Goze, M., Remm, E., On Riemannian non symmetric spaces and flag manifolds, arXiv:math/0609790. MR2114414
- Goze, M., Remm, E., –symmetric spaces, Differential geometry, World Sci. Publ., Hackensack, NJ, 2009, pp. 195–206. (2009) Zbl1178.53047MR2523505
- Kobayashi, S., Nomizu, K., Foundations of differential geometry, Vollume II, llume II, Interscience Tracts in Pure and Applied Mathematics, No. 15, Interscience Publishers John Wiley and Sons, Inc., New York–London–Sydney, 1969. MR0238225
- Kobayashi, S., Nomizu, K., Foundations of differential geometry, volume I, lume I, Interscience Publishers, John Wiley and Sons, New York–London, 1963. MR0152974
- Kollross, A., 10.2140/pjm.2009.242.113, Pacific J. Math. 242 (1) (2009), 113–130. (2009) MR2525505DOI10.2140/pjm.2009.242.113
- Kowalski, O., Generalized symmetric spaces, volume II, lume II, Lecture Notes in Math. 805, Springer–Verlag, Berlin–New York, 1980. (1980) MR0579184
- Lutz, R., Sur la géométrie des espaces –symétriques, C. R. Acad. Sci. Paris Sér. I Math. 293 (1) (1981), 55–58. (1981) Zbl0474.53047MR0633562
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.