Riemannian symmetries in flag manifolds

Paola Piu; Elisabeth Remm

Archivum Mathematicum (2012)

  • Volume: 048, Issue: 5, page 387-398
  • ISSN: 0044-8753

Abstract

top
Flag manifolds are in general not symmetric spaces. But they are provided with a structure of 2 k -symmetric space. We describe the Riemannian metrics adapted to this structure and some properties of reducibility. The conditions for a metric adapted to the 2 2 -symmetric structure to be naturally reductive are detailed for the flag manifold S O ( 5 ) / S O ( 2 ) × S O ( 2 ) × S O ( 1 ) .

How to cite

top

Piu, Paola, and Remm, Elisabeth. "Riemannian symmetries in flag manifolds." Archivum Mathematicum 048.5 (2012): 387-398. <http://eudml.org/doc/251409>.

@article{Piu2012,
abstract = {Flag manifolds are in general not symmetric spaces. But they are provided with a structure of $\mathbb \{Z\}_2^k$-symmetric space. We describe the Riemannian metrics adapted to this structure and some properties of reducibility. The conditions for a metric adapted to the $\mathbb \{Z\}_2^2$-symmetric structure to be naturally reductive are detailed for the flag manifold $SO(5)/SO(2)\times SO(2) \times SO(1)$.},
author = {Piu, Paola, Remm, Elisabeth},
journal = {Archivum Mathematicum},
keywords = {$\mathbb \{Z\}_2^k$-symmetric space; flag manifolds; Riemannian metrics; -symmetric space; flag manifold; Riemannian metrics},
language = {eng},
number = {5},
pages = {387-398},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Riemannian symmetries in flag manifolds},
url = {http://eudml.org/doc/251409},
volume = {048},
year = {2012},
}

TY - JOUR
AU - Piu, Paola
AU - Remm, Elisabeth
TI - Riemannian symmetries in flag manifolds
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 5
SP - 387
EP - 398
AB - Flag manifolds are in general not symmetric spaces. But they are provided with a structure of $\mathbb {Z}_2^k$-symmetric space. We describe the Riemannian metrics adapted to this structure and some properties of reducibility. The conditions for a metric adapted to the $\mathbb {Z}_2^2$-symmetric structure to be naturally reductive are detailed for the flag manifold $SO(5)/SO(2)\times SO(2) \times SO(1)$.
LA - eng
KW - $\mathbb {Z}_2^k$-symmetric space; flag manifolds; Riemannian metrics; -symmetric space; flag manifold; Riemannian metrics
UR - http://eudml.org/doc/251409
ER -

References

top
  1. Arias–Marco, T., Kowalski, O., 10.1007/s10587-008-0014-y, Czechoslovak Math. J. 58 (1) (2008), 203–239. (2008) Zbl1174.53024MR2402535DOI10.1007/s10587-008-0014-y
  2. Bahturin, Y., Goze, M., 10.2140/pjm.2008.236.1, Pacific J. Math. 236 (1) (2008), 1–21. (2008) MR2398984DOI10.2140/pjm.2008.236.1
  3. Bouyakoub, A., Goze, M., Remm, E., On Riemannian non symmetric spaces and flag manifolds, arXiv:math/0609790. MR2114414
  4. Goze, M., Remm, E., Γ –symmetric spaces, Differential geometry, World Sci. Publ., Hackensack, NJ, 2009, pp. 195–206. (2009) Zbl1178.53047MR2523505
  5. Kobayashi, S., Nomizu, K., Foundations of differential geometry, Vollume II, llume II, Interscience Tracts in Pure and Applied Mathematics, No. 15, Interscience Publishers John Wiley and Sons, Inc., New York–London–Sydney, 1969. MR0238225
  6. Kobayashi, S., Nomizu, K., Foundations of differential geometry, volume I, lume I, Interscience Publishers, John Wiley and Sons, New York–London, 1963. MR0152974
  7. Kollross, A., 10.2140/pjm.2009.242.113, Pacific J. Math. 242 (1) (2009), 113–130. (2009) MR2525505DOI10.2140/pjm.2009.242.113
  8. Kowalski, O., Generalized symmetric spaces, volume II, lume II, Lecture Notes in Math. 805, Springer–Verlag, Berlin–New York, 1980. (1980) MR0579184
  9. Lutz, R., Sur la géométrie des espaces Γ –symétriques, C. R. Acad. Sci. Paris Sér. I Math. 293 (1) (1981), 55–58. (1981) Zbl0474.53047MR0633562

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.