Moment estimation methods for stationary spatial Cox processes - A comparison
Jiří Dvořák; Michaela Prokešová
Kybernetika (2012)
- Volume: 48, Issue: 5, page 1007-1026
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topDvořák, Jiří, and Prokešová, Michaela. "Moment estimation methods for stationary spatial Cox processes - A comparison." Kybernetika 48.5 (2012): 1007-1026. <http://eudml.org/doc/251433>.
@article{Dvořák2012,
abstract = {In the present paper we consider the problem of fitting parametric spatial Cox point process models. We concentrate on the moment estimation methods based on the second order characteristics of the point process in question. These methods represent a simulation-free faster-to-compute alternative to the computationally intense maximum likelihood estimation. We give an overview of the available methods, discuss their properties and applicability. Further we present results of a simulation study in which performance of these estimating methods was compared for planar point processes with different types and strength of clustering and inter-point interactions.},
author = {Dvořák, Jiří, Prokešová, Michaela},
journal = {Kybernetika},
keywords = {moment estimation methods; spatial Cox point process; parametric inference; moment estimation methods; spatial Cox point process; parametric inference},
language = {eng},
number = {5},
pages = {1007-1026},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Moment estimation methods for stationary spatial Cox processes - A comparison},
url = {http://eudml.org/doc/251433},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Dvořák, Jiří
AU - Prokešová, Michaela
TI - Moment estimation methods for stationary spatial Cox processes - A comparison
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 5
SP - 1007
EP - 1026
AB - In the present paper we consider the problem of fitting parametric spatial Cox point process models. We concentrate on the moment estimation methods based on the second order characteristics of the point process in question. These methods represent a simulation-free faster-to-compute alternative to the computationally intense maximum likelihood estimation. We give an overview of the available methods, discuss their properties and applicability. Further we present results of a simulation study in which performance of these estimating methods was compared for planar point processes with different types and strength of clustering and inter-point interactions.
LA - eng
KW - moment estimation methods; spatial Cox point process; parametric inference; moment estimation methods; spatial Cox point process; parametric inference
UR - http://eudml.org/doc/251433
ER -
References
top- Baddeley, A. J., Turner, R., 10.1111/1467-842X.00128, Aust. N. Z. J. Statist. 42 (2000), 283-322. MR1794056DOI10.1111/1467-842X.00128
- Baddeley, A. J., Turner, R., Spatstat: an R package for analyzing spatial point patterns., J. Statist. Softw. 12 (2005), 1-42.
- Brix, A., 10.1239/aap/1029955251, Adv. in Appl. Probab. 31 (1999), 929-953. Zbl0957.60055MR1747450DOI10.1239/aap/1029955251
- Cox, D. R., Some statistical models related with series of events., J. Roy. Statist. Soc. Ser. B 17 (1955), 129-164. MR0092301
- Daley, D. J., Vere-Jones, D., An Introduction to the Theory of Point Processes. Volume 1: Elementary Theory and Methods., Second edition. Springer Verlag, New York 2003. MR1950431
- Daley, D. J., Vere-Jones, D., An Introduction to the Theory of Point Processes. Volume 2: General Theory and Structure., Second edition. Springer Verlag, New York 2008. MR2371524
- Diggle, P. J., Statistical Analysis of Spatial Point Patterns., Academic Press, London 1983. Zbl1021.62076MR0743593
- Diggle, P. J., Statistical Analysis of Spatial Point Patterns., Second edition. Oxford University Press, New York 2003. Zbl1021.62076MR0743593
- Dvořák, J., Prokešová, M., Moment estimation methods for stationary spatial Cox processes - a simulation study., Preprint (2011), .
- Guan, Y., 10.1198/016214506000000500, J. Amer. Statist. Assoc. 101 (2006), 1502-1512. Zbl1171.62348MR2279475DOI10.1198/016214506000000500
- Guan, Y., Sherman, M., 10.1111/j.1467-9868.2007.00575.x, J. Roy. Statist. Soc. Ser. B 69 (2007), 31-49. MR2301498DOI10.1111/j.1467-9868.2007.00575.x
- Heinrich, L., Minimum contrast estimates for parameters of spatial ergodic point processes., In: Trans. 11th Prague Conference on Random Processes, Information Theory and Statistical Decision Functions. Academic Publishing House, Prague 1992.
- Hellmund, G., Prokešová, M., Jensen, E. B. Vedel, 10.1239/aap/1222868178, Adv. in Appl. Probab. 40 (2008), 603-629. MR2454025DOI10.1239/aap/1222868178
- Illian, J., Penttinen, A., Stoyan, H., Stoyan, D., Statistical Analysis and Modelling of Spatial Point Patterns., John Wiley and Sons, Chichester 2008. Zbl1197.62135MR2384630
- Jensen, A. T., Statistical Inference for Doubly Stochastic Poisson Processes., Ph.D. Thesis, Department of Applied Mathematics and Statistics, University of Copenhagen 2005.
- Lindsay, B. G., 10.1090/conm/080/999014, Contemp. Math. 80 (1988), 221-239. Zbl0672.62069MR0999014DOI10.1090/conm/080/999014
- Matérn, B., Doubly stochastic Poisson processes in the plane., In: Statistical Ecology. Volume 1. Pennsylvania State University Press, University Park 1971.
- Møller, J., Syversveen, A. R., Waagepetersen, R. P., 10.1111/1467-9469.00115, Scand. J. Statist. 25 (1998), 451-482. MR1650019DOI10.1111/1467-9469.00115
- Møller, J., 10.1239/aap/1059486821, Adv. in Appl. Probab. (SGSA) 35 (2003), 614-640. MR1990607DOI10.1239/aap/1059486821
- Møller, J., Waagepetersen, R. P., Statistical Inference and Simulation for Spatial Point Processes., Chapman and Hall/CRC, Florida 2003.
- Møller, J., Waagepetersen, R. P., Modern statistics for spatial point processes., Scand. J. Statist. 34 (2007), 643-684. MR2392447
- Prokešová, M., Jensen, E. B. Vedel, Asymptotic Palm likelihood theory for stationary spatial point processes., Accepted to Ann. Inst. Statist. Math. (2012).
- Tanaka, U., Ogata, Y., Stoyan, D., Parameter estimation and model selection for Neyman-Scott point processes., Biometrical J. 49 (2007), 1-15. MR2414637
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.