Chance constrained bottleneck transportation problem with preference of routes
Yue Ge; Minghao Chen; Hiroaki Ishii
Kybernetika (2012)
- Volume: 48, Issue: 5, page 958-967
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topGe, Yue, Chen, Minghao, and Ishii, Hiroaki. "Chance constrained bottleneck transportation problem with preference of routes." Kybernetika 48.5 (2012): 958-967. <http://eudml.org/doc/251435>.
@article{Ge2012,
abstract = {This paper considers a variant of the bottleneck transportation problem. For each supply-demand point pair, the transportation time is an independent random variable. Preference of each route is attached. Our model has two criteria, namely: minimize the transportation time target subject to a chance constraint and maximize the minimal preference among the used routes. Since usually a transportation pattern optimizing two objectives simultaneously does not exist, we define non-domination in this setting and propose an efficient algorithm to find some non-dominated transportation patterns. We then show the time complexity of the proposed algorithm. Finally, a numerical example is presented to illustrate how our algorithm works.},
author = {Ge, Yue, Chen, Minghao, Ishii, Hiroaki},
journal = {Kybernetika},
keywords = {bottleneck transportation; random transportation time; chance constraint; preference of routes; non-domination; bottleneck transportation; random transportation time; chance constraint; preference of routes; non-domination},
language = {eng},
number = {5},
pages = {958-967},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Chance constrained bottleneck transportation problem with preference of routes},
url = {http://eudml.org/doc/251435},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Ge, Yue
AU - Chen, Minghao
AU - Ishii, Hiroaki
TI - Chance constrained bottleneck transportation problem with preference of routes
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 5
SP - 958
EP - 967
AB - This paper considers a variant of the bottleneck transportation problem. For each supply-demand point pair, the transportation time is an independent random variable. Preference of each route is attached. Our model has two criteria, namely: minimize the transportation time target subject to a chance constraint and maximize the minimal preference among the used routes. Since usually a transportation pattern optimizing two objectives simultaneously does not exist, we define non-domination in this setting and propose an efficient algorithm to find some non-dominated transportation patterns. We then show the time complexity of the proposed algorithm. Finally, a numerical example is presented to illustrate how our algorithm works.
LA - eng
KW - bottleneck transportation; random transportation time; chance constraint; preference of routes; non-domination; bottleneck transportation; random transportation time; chance constraint; preference of routes; non-domination
UR - http://eudml.org/doc/251435
ER -
References
top- Adeyefa, A. S., Luhandjula, M. K., 10.4236/ajor.2011.14023, Amer. J. Oper. Res. 1 (2011), 203-213. DOI10.4236/ajor.2011.14023
- Ahuja, R. K., Orlin, J. B., Tarjan, R. E., 10.1137/0218065, SIAM J. Comput. 18 (1989), 939-954. Zbl0675.90029MR1015267DOI10.1137/0218065
- Branda, M., Dupačová, J., 10.1007/s10479-010-0811-1, Ann. Oper. Res. 193 (2012), 3-19. MR2874754DOI10.1007/s10479-010-0811-1
- Charnes, A., Cooper, W. W., 10.1287/mnsc.1.1.49, Management Sci. 1 (1954), 49-69. Zbl0995.90512MR0074103DOI10.1287/mnsc.1.1.49
- Chen, M. H., Ishii, H., Wu, C. X., Transportation problems on a fuzzy network., Internat. J. Innov. Comput. Inform. Control 4 (2008), 1105-1109.
- Dantzig, G. B., Application of the simplex method to a transportation problem., In: Activity Analysis of Production and Allocation, Chapter 23, Cowles Commission Monograph 13. Wiley, New York 1951. Zbl0045.09901MR0056262
- Ford, L. R., Jr., Fulkerson, D. R., 10.1287/mnsc.3.1.24, Management Sci. 3 (1956), 24-32. DOI10.1287/mnsc.3.1.24
- Garfinkel, R. S., Rao, M. R., 10.1002/nav.3800180404, Naval Res. Logist. Quart. 18 (1971), 465-472. Zbl0262.90040MR0337282DOI10.1002/nav.3800180404
- Ge, Y., Ishii, H., Stochastic bottleneck transportation problem with flexible supply and demand quantity., Kybernetika 47 (2011), 4, 560-571. Zbl1228.90136MR2884861
- Geetha, S., Nair, K. P. K., A stochastic bottleneck transportation problem., J. Oper. Res. Soc. 45 (1994), 583-588. Zbl0807.90090
- Hammer, P. L., Time minimizing transportation problem., Naval Res. Logist. Quart. 16 (1969), 345-357. MR0260422
- Hitchcock, F. L., The distribution of a product from several sources to numerous localities., J. Math. Phys. 20 (1941), 224-230. Zbl0026.33904MR0004469
- Kall, P., Wallace, S. W., Stochastic Programming., John Wiley and Sons, New York 1994. Zbl0812.90122MR1315300
- Munkres, J., 10.1137/0105003, J. Soc. Industr. Appl. Math. 5 (1957), 32-38. Zbl0131.36604MR0093429DOI10.1137/0105003
- Prékopa, A., Probabilistic programming., In: Stochastic Programming (A. Ruszczynski and A. Shapiro, eds.), Handbook in Operations Research and Management Science 10 (2003), Elsevier, Amsterdam, pp. 267-352. Zbl1042.90597MR2052757
- Russell, R., Klingman, D., Partow-Navid, P., 10.1002/nav.3800300103, Naval Res. Logist. Quart. 30 (1983), 13-35. MR0709687DOI10.1002/nav.3800300103
- Srinivasan, V., Thompson, G. L., 10.1002/nav.3800190202, Naval Res. Logist. Quart. 19 (1972), 205-226. MR0321525DOI10.1002/nav.3800190202
- Srinivasan, V., Thompson, G. L., 10.1002/nav.3800230402, Naval Res. Logist. Quart. 23 (1976), 567-595. MR0446483DOI10.1002/nav.3800230402
- Szwarc, W., 10.1002/nav.3800180405, Naval Res. Logist. Quart. 18 (1971), 473-485. Zbl0278.90046MR0337298DOI10.1002/nav.3800180405
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.