From Attraction Theory to Existence Proofs: The Evolution of Potential-Theoretic Methods in the Study of Boundary-Value Problems, 1860–1890

Thomas Archibald

Revue d'histoire des mathématiques (1996)

  • Volume: 2, Issue: 1, page 67-93
  • ISSN: 1262-022X

Abstract

top
This paper examines developments in the study of boundary-value problems between about 1860 and 1890, in the context of the general evolution of this theory from the physical models in which the subject has its roots to a free-standing part of pure mathematics. The physically-motivated work of Carl Neumann and his method of the arithmetic mean appear as an initial phase in this development, one which employs physical models as an integral part of its reasoning and which concentrates on geometrical hypotheses concerning the regions under study. The alternating method of Hermann Amandus Schwarz, roughly contemporary to that of Neumann, exhibits more strongly the analytic influence of Weierstrass. Both methods form the essential background to Émile Picard’s method of successive approximations, developed by him following a reading of both men’s work. Picard’s work, analytically rigorous and remote from physical argument, marks both a transition of the subject matter from applied to pure mathematics, and the full comprehension and mastery of Weierstrassian methods in the French context.

How to cite

top

Archibald, Thomas. "From Attraction Theory to Existence Proofs: The Evolution of Potential-Theoretic Methods in the Study of Boundary-Value Problems, 1860–1890." Revue d'histoire des mathématiques 2.1 (1996): 67-93. <http://eudml.org/doc/252026>.

@article{Archibald1996,
abstract = {This paper examines developments in the study of boundary-value problems between about 1860 and 1890, in the context of the general evolution of this theory from the physical models in which the subject has its roots to a free-standing part of pure mathematics. The physically-motivated work of Carl Neumann and his method of the arithmetic mean appear as an initial phase in this development, one which employs physical models as an integral part of its reasoning and which concentrates on geometrical hypotheses concerning the regions under study. The alternating method of Hermann Amandus Schwarz, roughly contemporary to that of Neumann, exhibits more strongly the analytic influence of Weierstrass. Both methods form the essential background to Émile Picard’s method of successive approximations, developed by him following a reading of both men’s work. Picard’s work, analytically rigorous and remote from physical argument, marks both a transition of the subject matter from applied to pure mathematics, and the full comprehension and mastery of Weierstrassian methods in the French context.},
author = {Archibald, Thomas},
journal = {Revue d'histoire des mathématiques},
keywords = {potential theory; boundary value problems; Carl Neumann; Jules Riemann; E. Picard},
language = {eng},
number = {1},
pages = {67-93},
publisher = {Société mathématique de France},
title = {From Attraction Theory to Existence Proofs: The Evolution of Potential-Theoretic Methods in the Study of Boundary-Value Problems, 1860–1890},
url = {http://eudml.org/doc/252026},
volume = {2},
year = {1996},
}

TY - JOUR
AU - Archibald, Thomas
TI - From Attraction Theory to Existence Proofs: The Evolution of Potential-Theoretic Methods in the Study of Boundary-Value Problems, 1860–1890
JO - Revue d'histoire des mathématiques
PY - 1996
PB - Société mathématique de France
VL - 2
IS - 1
SP - 67
EP - 93
AB - This paper examines developments in the study of boundary-value problems between about 1860 and 1890, in the context of the general evolution of this theory from the physical models in which the subject has its roots to a free-standing part of pure mathematics. The physically-motivated work of Carl Neumann and his method of the arithmetic mean appear as an initial phase in this development, one which employs physical models as an integral part of its reasoning and which concentrates on geometrical hypotheses concerning the regions under study. The alternating method of Hermann Amandus Schwarz, roughly contemporary to that of Neumann, exhibits more strongly the analytic influence of Weierstrass. Both methods form the essential background to Émile Picard’s method of successive approximations, developed by him following a reading of both men’s work. Picard’s work, analytically rigorous and remote from physical argument, marks both a transition of the subject matter from applied to pure mathematics, and the full comprehension and mastery of Weierstrassian methods in the French context.
LA - eng
KW - potential theory; boundary value problems; Carl Neumann; Jules Riemann; E. Picard
UR - http://eudml.org/doc/252026
ER -

References

top
  1. [1] Archibald ( T.) [1991] Riemann and the theory of electrical phenomena: Nobili’s rings, Centaurus, 34 (1991), pp. 247–271. Zbl0755.01019MR1166073
  2. [2] Bendixson ( I.) [1897] Sur la convergence uniforme des séries, Öfversigt af Kongl. Vetenskaps-Akademiens Förhandlingar, 54 (1897), pp. 605-622. JFM28.0219.01
  3. [3] Biermann ( K.-R.) [1973] Die Mathematik und ihre Dozenten an der Berliner Universität, 1810–1933, Berlin: Akademie-Verlag, 1973. Zbl0661.01026MR437267
  4. [4] Carathéodory ( C. ) [1927] Hermann Amandus Schwarz, in Deutsches Biographisches Jahrbuch, 1927, pp. 236-238; Gesammelte mathematische Schriften V, München: C.H. Beck, 1957, pp. 57-59. 
  5. [5] Darboux ( G.) [1896] Leçons sur la théorie générale des surfaces, vol. 4, Paris: Gauthier-Villars, 1896. 
  6. [6] Dugac ( P.) [1973] Éléments d’analyse de Karl Weierstrass, Archive for History of Exact Sciences, 10 (1973), pp. 41–176. Zbl0259.01012MR446835
  7. [7] Gispert ( H.) [1991] La France mathématique: la Société mathématique de France, 1872–1914, (Cahiers d’histoire et de philosophie des sciences, no 34), Paris: Société Française d’Histoire des Sciences et des Techniques/Société Mathématique de France, 1991. Zbl0728.01029MR1354143
  8. [8] Green ( G.) [1828] An essay on the application of mathematical analysis to the theories of electricity and magnetism, Nottingham: 1828 (published privately). Reprinted in Journal für die reine und angewandte Mathematik, 39 (1850), pp. 76-89; Ibid., 44 (1852), pp. 356–374; Ibid., 47 (1854), pp. 161–221. Repr. in Mathematical Papers of George Green, ed. by N. M. Ferrers, 1871 (repr., New York: Chelsea, 1970). 
  9. [9] Harnack ( A.) [1887] Die Grundlagen der Theorie des logarithmischen Potentiales und der eindeutigen Potentialfunktion in der Ebene, Leipzig, 1887. JFM19.1026.05
  10. [10] Hölder ( O.) [1882] Beiträge zur Potentialtheorie, Inauguraldissertation, Stuttgart, 1882. 
  11. [11] Kantorovich ( L.V.) [1939] The method of successive approximations for functional equations, Acta mathematica, 71 (1939), pp. 63–97. Zbl0021.13604MR95
  12. [12] Lützen ( J.) [1990] Joseph Liouville 1809–1882: master of pure and applied mathematics, New York: Springer, 1990. Zbl0701.01015MR1066463
  13. [13] Neumann ( C.G.) [1861] Ueber die Integration der partiellen Differentialgleichung 2 · x 2 + 2 · y 2 = 0 , J. reine angew. Math., 59 (1861), pp. 335–366. 
  14. [14] Neumann ( C.G.) [1870a] Zur Theorie des Logarithmischen und des Newton’schen Potentiales. Erste Mittheilung, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, 22 (1870), pp. 49-56. JFM03.0493.01
  15. [15] Neumann ( C.G.) [1870b] Zur Theorie des Logarithmischen und des Newton’schen Potentiales. Zweite Mittheilung, Ibid., 22 (1870), pp. 264–321. JFM03.0493.01
  16. [16] Neumann ( C.G.) [1877] Untersuchungen über das Logarithmische und Newton’sche Potential, Leipzig, 1877. Zbl10.0658.05JFM10.0658.05
  17. [17] Neumann ( C.G.) [1887] Über die Methode des arithmetischen Mittels. Erste Abhandlung, Abhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften, 22 (1887), pp. 707-820. JFM19.1029.01
  18. [18] Picard ( C.E.) [Œuvres] Œuvres de Ch.-E. Picard, 4 vol., Paris: Centre national de la recherche scientifique, 1978–1981. Zbl0504.01036MR650800
  19. [19] Picard ( C.E.) [1888] Sur un théorème relatif à l’attraction, Comptes rendus hebdomadaires des séances de l’Académie des sciences, 107 (1888), pp. 984-985; Œuvres 2, pp. 355–356. JFM20.1018.02
  20. [20] Picard ( C.E.) [1889a] Sur une classe d’équations linéaires aux dérivées partielles du second ordre, Acta math., 12 (1889), pp. 323–338; Œuvres 2, pp. 357–372. (Paper is dated Nov. 4 1888.) MR1554775JFM21.0348.01
  21. [21] Picard ( C.E.) [1889b] Sur la détermination des intégrales de certaines équations aux dérivées partielles par leurs valeurs sur un contour, C. R. Acad. sci. Paris, 109 (1889), pp. 499-501; Œuvres 2, pp. 373–375. Zbl21.0347.03JFM21.0347.03
  22. [22] Picard ( C.E.) [1890a] Sur l’emploi des approximations successives dans l’étude de certaines équations aux dérivées partielles, C. R. Acad. sci. Paris, 110 (1890), pp. 61–67; Œuvres 2, pp. 377–383. Zbl22.0357.01JFM22.0357.01
  23. [23] Picard ( C.E.) [1890b] Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives, Journal de mathématiques pures et appliquées, (IV) 6 (1890), pp. 145–210; Œuvres 2, pp. 384–450. Zbl22.0357.02JFM22.0357.02
  24. [24] Picard ( C.E.) [Traité] Traité d’analyse, 3 vol., Paris: Gauthier-Villars, 1891–1896; 2nd ed., 1901–1908; 3rd ed. 1922–1928. JFM54.0450.09
  25. [25] Picard ( C.E.) [1938] Prix Mittag-Leffler 1937: Cérémonie de remise de la médaille de l’Institut Mittag-Leffler à M. Émile Picard, Acta math., 69 (1938), pp. xxiii–xxvi. 
  26. [26] Picard ( C.E.)J.C. POGGENDORFF’S BIOGRAPHISCHES-LITERARISCHES HANDWÖRTERBUCH 
  27. [27] Picard ( C.E.) [Poggendorff IV] vol. IV, ed. by A.J. von Oettingen, Leipzig, 1904. 
  28. [28] Riemann ( B.) [1855] Zur Theorie der Nobili’schen Farbenringe, Annalen der Physik und Chemie, 95 (1855) ; Gesammelte mathematische Werke, ed. by H. Weber, 2nd ed., 1892, pp. 55–62. 
  29. [29] Riemann ( J.) [1888] Sur le problème de Dirichlet, Thesis, Faculté des sciences, Paris, 1888. JFM20.0383.01
  30. [30] Schwarz ( H.A.) [GMA] Gesammelte mathematische Abhandlungen, 2 vol., Berlin, 1890; repr., New York: Chelsea, 1970. 
  31. [31] Schwarz ( H.A.) [1869a] Ueber einige Abbildungsaufgaben, J. reine angew. Math., 70 (1869), pp. 105–120; GMA 2, pp. 65–83. JFM02.0626.01
  32. [32] Schwarz ( H.A.) [1869b] Notizia sulla rappresentazione conforme di un’area ellittica sopra un’area circolare, Annali di matematica, (II) 3 (1869), pp. 166–170; GMA 2, pp. 102–107. 
  33. [33] Schwarz ( H.A.) [1869c] Zur Theorie der Abbildung, GMA 2 (1890), pp. 108–132. 
  34. [34] Schwarz ( H.A.) [1870a] Ueber einen Grenzübergang durch alternirendes Verfahren, Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich, 15 (1870), pp. 272–286; GMA 2, pp. 133–143. JFM02.0214.02
  35. [35] Schwarz ( H.A.) [1870b] Ueber die Integration der partiellen Differentialgleichung 2 u x 2 + 2 u y 2 = 0 unter vorgeschriebenen Grenz— und Unstetigkeitsbedingungen, Monatsberichte der Königlichen Akademie der Wissenschaften zu Berlin, (1870), pp. 767–795; GMA 2, pp. 144–171. JFM02.0214.03
  36. [36] Schwarz ( H.A.) [1885] Ueber ein die Flächen kleinsten Flächeninhalts betreffendes Problem der Variationsrechnung, (Festschrift zum Jubelgeburtstage des Herrn Weierstrass), Acta societatis scientiarum Fennicae, 15 (1885), pp. 315–362; GMA 1, pp. 223–269. 
  37. [37] Schwarz ( H.A.) [1890] Anmerkungen und Zusätze zum zweiten Bande, GMA 2, pp. 350–370. 
  38. [38] Simart ( G.) [1882] Commentaire sur deux mémoires de Riemann relatifs à la théorie générale des fonctions et au principe de Dirichlet, Thesis, Faculté des sciences, Paris, 1882. 
  39. [39] Tazzioli ( R.) [1994] Il teorema di rappresentazione di Riemann: critica e interpretazione di Schwarz, Rendiconti del Circolo matematico di Palermo, (II) Supplemento, 34 (1994), pp. 95–132. Zbl0812.01016MR1295592
  40. [40] Zech ( T.) [1938] Über ein Hilfsmittel zur geometrischen Behandlung der Picarditeration, Acta math., 69 (1938), pp. 207–228. Zbl0019.21303MR1555439JFM64.0420.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.