Recent progress about the continuum hypothesis

Patrick Dehornoy

Séminaire Bourbaki (2002-2003)

  • Volume: 45, page 147-172
  • ISSN: 0303-1179

Abstract

top
Woodin’s recent work has considerably renewed set theory by restoring its unity and making the domain more globally intelligible. For the first time, his results open a realistic perspective to solve the Continuum Problem, and, at the very least, they show that the latter is an unquestionably meaningful and precise question.

How to cite

top

Dehornoy, Patrick. "Progrès récents sur l’hypothèse du continu." Séminaire Bourbaki 45 (2002-2003): 147-172. <http://eudml.org/doc/252125>.

@article{Dehornoy2002-2003,
abstract = {Les travaux récents de Woodin ont considérablement renouvelé la théorie des ensembles en lui apportant une intelligibilité globale et en restaurant son unité. Pour la première fois, ses résultats ouvrent une perspective réaliste de résoudre le problème du continu, et, à tout le moins, ils établissent le caractère irréfutablement signifiant et précis de celui-ci.},
author = {Dehornoy, Patrick},
journal = {Séminaire Bourbaki},
keywords = {set theory; continuum hypothesis; forcing; large cardinal axiom},
language = {fre},
pages = {147-172},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Progrès récents sur l’hypothèse du continu},
url = {http://eudml.org/doc/252125},
volume = {45},
year = {2002-2003},
}

TY - JOUR
AU - Dehornoy, Patrick
TI - Progrès récents sur l’hypothèse du continu
JO - Séminaire Bourbaki
PY - 2002-2003
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 45
SP - 147
EP - 172
AB - Les travaux récents de Woodin ont considérablement renouvelé la théorie des ensembles en lui apportant une intelligibilité globale et en restaurant son unité. Pour la première fois, ses résultats ouvrent une perspective réaliste de résoudre le problème du continu, et, à tout le moins, ils établissent le caractère irréfutablement signifiant et précis de celui-ci.
LA - fre
KW - set theory; continuum hypothesis; forcing; large cardinal axiom
UR - http://eudml.org/doc/252125
ER -

References

top
  1. [1] J. Bagaria – “Bounded forcing axioms as principles of generic absoluteness”, Arch. Math. Logic 69 (2000), no. 6, p. 393–401. Zbl0966.03047MR1773776
  2. [2] P. Dehornoy – “La détermination projective d’après Martin, Steel et Woodin”, in Sém. Bourbaki (1988/89), Astérisque, vol. 177-178, Société Mathématique de France, 1989, exp. no 710, p. 261–276. Zbl0693.03033MR1040576
  3. [3] M. Feng, M. Magidor & H. Woodin – “Universally Baire sets of reals”, in Set Theory of the Continuum (H. Judah, W. Just & H. Woodin, éds.), MSRI Publ., vol. 26, Springer, 1992, p. 203–242. Zbl0781.03034MR1233821
  4. [4] M. Foreman – “Generic large cardinals : new axioms for mathematics ?”, in Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998). Zbl0917.03022MR1648052
  5. [5] M. Foreman, M. Magidor & S. Shelah – “Martin’s maximum, saturated ideals, and nonregular ultrafilters”, Ann. of Math. 127 (1988), no. 1, p. 1–47. Zbl0645.03028MR924672
  6. [6] H. Friedman – “On the necessary use of abstract set theory”, Adv. in Math.41 (1981), p. 209–280. Zbl0483.03030MR630921
  7. [7] K. Gödel – “What is Cantor’s Continuum Problem ?”, Amer. Math. Monthly54 (1947), p. 515–545. Zbl0038.03003MR23780
  8. [8] M. Goldstern & S. Shelah – “The bounded proper forcing axiom”, J. Symbolic Logic 60 (1995), no. 1, p. 58–73. Zbl0819.03042MR1324501
  9. [9] A. Kanamori – The higher infinite, Springer, Berlin, 1994. Zbl0813.03034MR1321144
  10. [10] Yu. Manin – “Georg Cantor and his heritage”, arXiv:math.AG/0209244, 2002. Zbl1106.03302MR2101294
  11. [11] Y. Matijasevich & J. Robinson – “Reduction of an arbitrary Diophantine equation in one in 13 unknowns”, Acta Arith.27 (1975), p. 521–553. Zbl0279.10019MR387188
  12. [12] W. Mitchell & J. Steel – Fine structure and iteration trees, Springer, Berlin, 1994. Zbl0805.03042MR1300637
  13. [13] Y. Moschovakis – Descriptive set theory, North-Holland, Amsterdam, 1980. Zbl0433.03025MR561709
  14. [14] S. Shelah – Proper and improper forcing, 2e ’ed., Perspectives in Math. Logic, Springer, Berlin, 1998. Zbl0495.03035MR1623206
  15. [15] S. Todorcevic – “Generic absoluteness and the continuum”, Math. Res. Lett.9 (2002), p. 465–471. Zbl1028.03040MR1928866
  16. [16] W.H. Woodin – The Axiom of Determinacy, forcing axioms, and the nonstationary ideal, Walter de Gruyter and co., Berlin, 1999. Zbl1203.03059MR1713438
  17. [17] —, “The Continuum Hypothesis, I and II”, Notices Amer. Math. Soc. 48 (2001), no. 6, p. 567–576, & 8 (2001), no. 7, p. 681-690. Zbl0992.03063MR1834351
  18. [18] —, The Continuum Hypothesis and the Ø -Conjecture, Coxeter Lectures, Fields Institute, Toronto, novembre 2002, Notes disponibles à l’adresse http://av.fields.utoronto.ca/slides/02-03/coxeter_lectures/woodin/. 
  19. [19] —, “The Continuum Hypothesis”, in Proceedings Logic Colloquium 2000, Paris, à paraître. Zbl0955.03054

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.