Hyperbolic systems and vanishing viscosity

Frédéric Rousset

Séminaire Bourbaki (2002-2003)

  • Volume: 45, page 231-250
  • ISSN: 0303-1179

Abstract

top
In this talk we will present the works of S. Bianchini and A. Bressan on the Cauchy problem for viscous perturbations t u ε + x f ( u ε ) = ε x x u ε of one-dimensional strictly hyperbolic systems t u + x f ( u ) = 0 . They have shown global existence ( t 0 ), uniqueness and stability and they have justified the limit when ε goes to zero for initial data with small total variation. Their analysis also shows that the solutions of the hyperbolic system obtained by this method coincide with the solutions obtained by other types of approximations.

How to cite

top

Rousset, Frédéric. "Systèmes hyperboliques et viscosité évanescente." Séminaire Bourbaki 45 (2002-2003): 231-250. <http://eudml.org/doc/252131>.

@article{Rousset2002-2003,
abstract = {Le but de l’exposé est de présenter les résultats obtenus par S. Bianchini et A. Bressan sur le problème de Cauchy pour des perturbations visqueuses $ \partial _t u^\varepsilon + \partial _x f(u^\varepsilon ) = \varepsilon \partial _\{xx\} u^\varepsilon $ de systèmes strictement hyperboliques $\partial _t u + \partial _x f(u) =0$ en une dimension d’espace. Ils ont en particulier montré l’existence globale ($t\ge 0$), l’unicité et la stabilité des solutions et justifié la convergence quand $\varepsilon $ tend vers zéro pour des données initiales à petite variation totale. Leur analyse montre aussi que les solutions du système hyperbolique ainsi obtenues coïncident avec les solutions provenant d’autres types d’approximations.},
author = {Rousset, Frédéric},
journal = {Séminaire Bourbaki},
keywords = {hyperbolic systems; vanishing viscosity method},
language = {fre},
pages = {231-250},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Systèmes hyperboliques et viscosité évanescente},
url = {http://eudml.org/doc/252131},
volume = {45},
year = {2002-2003},
}

TY - JOUR
AU - Rousset, Frédéric
TI - Systèmes hyperboliques et viscosité évanescente
JO - Séminaire Bourbaki
PY - 2002-2003
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 45
SP - 231
EP - 250
AB - Le but de l’exposé est de présenter les résultats obtenus par S. Bianchini et A. Bressan sur le problème de Cauchy pour des perturbations visqueuses $ \partial _t u^\varepsilon + \partial _x f(u^\varepsilon ) = \varepsilon \partial _{xx} u^\varepsilon $ de systèmes strictement hyperboliques $\partial _t u + \partial _x f(u) =0$ en une dimension d’espace. Ils ont en particulier montré l’existence globale ($t\ge 0$), l’unicité et la stabilité des solutions et justifié la convergence quand $\varepsilon $ tend vers zéro pour des données initiales à petite variation totale. Leur analyse montre aussi que les solutions du système hyperbolique ainsi obtenues coïncident avec les solutions provenant d’autres types d’approximations.
LA - fre
KW - hyperbolic systems; vanishing viscosity method
UR - http://eudml.org/doc/252131
ER -

References

top
  1. [1] P. Baiti & H.K. Jenssen – “On the front-tracking algorithm”, J. Math. Anal. Appl. 217 (1998), no. 2, p. 395–404. Zbl0966.35078MR1492096
  2. [2] S. Bianchini – “BV solutions of the semidiscrete upwind scheme”, Arch. Ration. Mech. Anal. 167 (2003), no. 1, p. 1–81. Zbl1024.65087MR1967667
  3. [3] S. Bianchini & A. Bressan – “BV solutions for a class of viscous hyperbolic systems”, Indiana Univ. Math. J. 49 (2000), no. 4, p. 1673–1713. Zbl0988.35109MR1838306
  4. [4] —, “A case study in vanishing viscosity”, Discrete Contin. Dynam. Systems 7 (2001), no. 3, p. 449–476. Zbl0983.35083MR1815762
  5. [5] —, “A center manifold technique for tracing viscous waves”, Commun. Pure Appl. Anal. 1 (2002), no. 2, p. 161–190. Zbl1017.35071MR1938610
  6. [6] —, “On a Lyapunov functional relating shortening curves and viscous conservation laws”, Nonlinear Anal. 51 (2002), no. 4, Ser. A : Theory Methods, p. 649–662. Zbl1050.35005MR1920342
  7. [7] —, “Vanishing viscosity solutions of nonlinear hyperbolic systems”, Preprint, 2002. 
  8. [8] A. Bressan – “Global solutions of systems of conservation laws by wave-front tracking”, J. Math. Anal. Appl. 170 (1992), no. 2, p. 414–432. Zbl0779.35067MR1188562
  9. [9] —, “The unique limit of the Glimm scheme”, Arch. Rational Mech. Anal. 130 (1995), no. 3, p. 205–230. Zbl0835.35088MR1337114
  10. [10] —, “Hyperbolic systems of conservation laws”, Rev. Mat. Complut. 12 (1999), no. 1, p. 135–200. Zbl1156.35427MR1698903
  11. [11] —, Hyperbolic systems of conservation laws, Oxford Lecture Series in Mathematics and its Applications, vol. 20, Oxford University Press, Oxford, 2000, The one-dimensional Cauchy problem. Zbl0997.35002MR1816648
  12. [12] A. Bressan, P. Baiti & H.K. Jenssen – “An instability of the Godunov scheme”, Preprint. Zbl1122.35074MR2254446
  13. [13] A. Bressan & R. M. Colombo – “The semigroup generated by 2 × 2 conservation laws”, Arch. Rational Mech. Anal. 133 (1995), no. 1, p. 1–75. Zbl0849.35068MR1367356
  14. [14] A. Bressan, G. Crasta & B. Piccoli – Well-posedness of the Cauchy problem for n × n systems of conservation laws, vol. 146, Mem. Amer. Math. Soc., no. 694, American Mathematical Society, 2000. Zbl0958.35001MR1686652
  15. [15] A. Bressan & P. Goatin – “Oleinik type estimates and uniqueness for n × n conservation laws”, J. Differential Equations 156 (1999), no. 1, p. 26–49. Zbl0990.35095MR1701818
  16. [16] A. Bressan & P.G. Le Floch – “Uniqueness of weak solutions to systems of conservation laws”, Arch. Rational Mech. Anal. 140 (1997), no. 4, p. 301–317. Zbl0903.35039MR1489317
  17. [17] A. Bressan & M. Lewicka – “A uniqueness condition for hyperbolic systems of conservation laws”, Discrete Contin. Dynam. Systems 6 (2000), no. 3, p. 673–682. Zbl1157.35421MR1757395
  18. [18] A. Bressan, T.-P. Liu & T. Yang – “ L 1 stability estimates for n × n conservation laws”, Arch. Ration. Mech. Anal. 149 (1999), no. 1, p. 1–22. Zbl0938.35093MR1723032
  19. [19] A. Bressan & T. Yang – “On the rate of convergence of the vanishing viscosity approximation”, Preprint, 2003. Zbl1060.35109
  20. [20] C.M. Dafermos – “The entropy rate admissibility criterion for solutions of hyperbolic conservation laws”, J. Differential Equations14 (1973), p. 202–212. Zbl0262.35038MR328368
  21. [21] —, Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325, Springer-Verlag, Berlin, 2000. Zbl0940.35002MR1763936
  22. [22] G. Dal Maso, P.G. Lefloch & F. Murat – “Definition and weak stability of nonconservative products”, J. Math. Pures Appl. (9) 74 (1995), no. 6, p. 483–548. Zbl0853.35068MR1365258
  23. [23] R.J. DiPerna – “Convergence of approximate solutions to conservation laws”, Arch. Rational Mech. Anal. 82 (1983), no. 1, p. 27–70. Zbl0519.35054MR684413
  24. [24] J. Glimm – “Solutions in the large for nonlinear hyperbolic systems of equations”, Comm. Pure Appl. Math.18 (1965), p. 697–715. Zbl0141.28902MR194770
  25. [25] J. Goodman – “Nonlinear asymptotic stability of viscous shock profiles for conservation laws”, Arch. Rational Mech. Anal. 95 (1986), no. 4, p. 325–344. Zbl0631.35058MR853782
  26. [26] J. Goodman & Z.P. Xin – “Viscous limits for piecewise smooth solutions to systems of conservation laws”, Arch. Rational Mech. Anal. 121 (1992), no. 3, p. 235–265. Zbl0792.35115MR1188982
  27. [27] O. Guès, G. Métivier, M. Williams & K. Zumbrun – “Multidimensional viscous shocks I, II”, Preprint, 2002. Zbl1058.35163
  28. [28] T. Iguchi & P.G. Le Floch – “Existence theory for hyperbolic systems of conservation laws with general flux-functions”, Preprint, 2002. Zbl1036.35130MR1991515
  29. [29] H.K. Jenssen – “Blowup for systems of conservation laws”, SIAM J. Math. Anal. 31 (2000), no. 4, p. 894–908 (electronic). Zbl0969.35091MR1752421
  30. [30] S. Khruzhkov – “First order quasilinear equations with several space variables”, Math. USSR Sbornik10 (1970), p. 217–243. Zbl0215.16203
  31. [31] P.D. Lax – “Hyperbolic systems of conservation laws. II”, Comm. Pure Appl. Math.10 (1957), p. 537–566. Zbl0081.08803MR93653
  32. [32] P.G. Le Floch – Hyperbolic systems of conservation laws, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2002, The theory of classical and nonclassical shock waves. Zbl1019.35001MR1927887
  33. [33] T.-P. Liu – Admissible solutions of hyperbolic conservation laws, vol. 30, Mem. Amer. Math. Soc., no. 240, American Mathematical Society, 1981. Zbl0446.76058MR603391
  34. [34] —, Nonlinear stability of shock waves for viscous conservation laws, vol. 56, Mem. Amer. Math. Soc., no. 328, American Mathematical Society, 1985. Zbl0617.35058MR791863
  35. [35] T.-P. Liu & T. Yang – “A new entropy functional for a scalar conservation law”, Comm. Pure Appl. Math. 52 (1999), no. 11, p. 1427–1442. Zbl0941.35051MR1702712
  36. [36] —, “Well-posedness theory for hyperbolic conservation laws”, Comm. Pure Appl. Math. 52 (1999), no. 12, p. 1553–1586. Zbl1034.35073MR1711037
  37. [37] —, “Weak solutions of general systems of hyperbolic conservation laws”, Comm. Math. Phys. 230 (2002), no. 2, p. 289–327. Zbl1041.35038MR1936793
  38. [38] N.H. Risebro – “A front-tracking alternative to the random choice method”, Proc. Amer. Math. Soc.117 (1993), p. 1125–1139. Zbl0799.35153MR1120511
  39. [39] F. Rousset – “Viscous approximation of strong shocks of systems of conservation laws”, SIAM J. Math. Anal. 35 (2003), no. 2, p. 492–519 (electronic). Zbl1052.35128MR2001110
  40. [40] D. Serre – Systems of conservation laws. 1, 2, Cambridge University Press, Cambridge, 2000, Geometric structures, oscillations, and initial-boundary value problems, Translated from the 1996 French original by I. N. Sneddon. Zbl0936.35001MR1775057
  41. [41] A. Szepessy & Z.P. Xin – “Nonlinear stability of viscous shock waves”, Arch. Rational Mech. Anal. 122 (1993), no. 1, p. 53–103. Zbl0803.35097MR1207241
  42. [42] A. Szepessy & K. Zumbrun – “Stability of rarefaction waves in viscous media”, Arch. Rational Mech. Anal. 133 (1996), no. 3, p. 249–298. Zbl0861.35037MR1387931
  43. [43] A. Vanderbauwhede – “Centre manifolds, normal forms and elementary bifurcations”, in Dynamics reported, Vol. 2, Dynam. Report. Ser. Dynam. Systems Appl., vol. 2, Wiley, Chichester, 1989, p. 89–169. Zbl0677.58001MR1000977
  44. [44] S.-H. Yu – “Zero-dissipation limit of solutions with shocks for systems of hyperbolic conservation laws”, Arch. Ration. Mech. Anal. 146 (1999), no. 4, p. 275–370. Zbl0935.35101MR1718368
  45. [45] K. Zumbrun – “Multidimensional stability of planar viscous shock waves”, in Advances in the theory of shock waves, Progr. Nonlinear Differential Equations Appl., vol. 47, Birkhäuser Boston, Boston, MA, 2001, p. 307–516. Zbl0989.35089MR1842778
  46. [46] K. Zumbrun & P. Howard – “Pointwise semigroup methods and stability of viscous shock waves”, Indiana Univ. Math. J. 47 (1998), no. 3, p. 741–871. Zbl0928.35018MR1665788

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.