Hyperbolic systems and vanishing viscosity
Séminaire Bourbaki (2002-2003)
- Volume: 45, page 231-250
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topRousset, Frédéric. "Systèmes hyperboliques et viscosité évanescente." Séminaire Bourbaki 45 (2002-2003): 231-250. <http://eudml.org/doc/252131>.
@article{Rousset2002-2003,
abstract = {Le but de l’exposé est de présenter les résultats obtenus par S. Bianchini et A. Bressan sur le problème de Cauchy pour des perturbations visqueuses $ \partial _t u^\varepsilon + \partial _x f(u^\varepsilon ) = \varepsilon \partial _\{xx\} u^\varepsilon $ de systèmes strictement hyperboliques $\partial _t u + \partial _x f(u) =0$ en une dimension d’espace. Ils ont en particulier montré l’existence globale ($t\ge 0$), l’unicité et la stabilité des solutions et justifié la convergence quand $\varepsilon $ tend vers zéro pour des données initiales à petite variation totale. Leur analyse montre aussi que les solutions du système hyperbolique ainsi obtenues coïncident avec les solutions provenant d’autres types d’approximations.},
author = {Rousset, Frédéric},
journal = {Séminaire Bourbaki},
keywords = {hyperbolic systems; vanishing viscosity method},
language = {fre},
pages = {231-250},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Systèmes hyperboliques et viscosité évanescente},
url = {http://eudml.org/doc/252131},
volume = {45},
year = {2002-2003},
}
TY - JOUR
AU - Rousset, Frédéric
TI - Systèmes hyperboliques et viscosité évanescente
JO - Séminaire Bourbaki
PY - 2002-2003
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 45
SP - 231
EP - 250
AB - Le but de l’exposé est de présenter les résultats obtenus par S. Bianchini et A. Bressan sur le problème de Cauchy pour des perturbations visqueuses $ \partial _t u^\varepsilon + \partial _x f(u^\varepsilon ) = \varepsilon \partial _{xx} u^\varepsilon $ de systèmes strictement hyperboliques $\partial _t u + \partial _x f(u) =0$ en une dimension d’espace. Ils ont en particulier montré l’existence globale ($t\ge 0$), l’unicité et la stabilité des solutions et justifié la convergence quand $\varepsilon $ tend vers zéro pour des données initiales à petite variation totale. Leur analyse montre aussi que les solutions du système hyperbolique ainsi obtenues coïncident avec les solutions provenant d’autres types d’approximations.
LA - fre
KW - hyperbolic systems; vanishing viscosity method
UR - http://eudml.org/doc/252131
ER -
References
top- [1] P. Baiti & H.K. Jenssen – “On the front-tracking algorithm”, J. Math. Anal. Appl. 217 (1998), no. 2, p. 395–404. Zbl0966.35078MR1492096
- [2] S. Bianchini – “BV solutions of the semidiscrete upwind scheme”, Arch. Ration. Mech. Anal. 167 (2003), no. 1, p. 1–81. Zbl1024.65087MR1967667
- [3] S. Bianchini & A. Bressan – “BV solutions for a class of viscous hyperbolic systems”, Indiana Univ. Math. J. 49 (2000), no. 4, p. 1673–1713. Zbl0988.35109MR1838306
- [4] —, “A case study in vanishing viscosity”, Discrete Contin. Dynam. Systems 7 (2001), no. 3, p. 449–476. Zbl0983.35083MR1815762
- [5] —, “A center manifold technique for tracing viscous waves”, Commun. Pure Appl. Anal. 1 (2002), no. 2, p. 161–190. Zbl1017.35071MR1938610
- [6] —, “On a Lyapunov functional relating shortening curves and viscous conservation laws”, Nonlinear Anal. 51 (2002), no. 4, Ser. A : Theory Methods, p. 649–662. Zbl1050.35005MR1920342
- [7] —, “Vanishing viscosity solutions of nonlinear hyperbolic systems”, Preprint, 2002.
- [8] A. Bressan – “Global solutions of systems of conservation laws by wave-front tracking”, J. Math. Anal. Appl. 170 (1992), no. 2, p. 414–432. Zbl0779.35067MR1188562
- [9] —, “The unique limit of the Glimm scheme”, Arch. Rational Mech. Anal. 130 (1995), no. 3, p. 205–230. Zbl0835.35088MR1337114
- [10] —, “Hyperbolic systems of conservation laws”, Rev. Mat. Complut. 12 (1999), no. 1, p. 135–200. Zbl1156.35427MR1698903
- [11] —, Hyperbolic systems of conservation laws, Oxford Lecture Series in Mathematics and its Applications, vol. 20, Oxford University Press, Oxford, 2000, The one-dimensional Cauchy problem. Zbl0997.35002MR1816648
- [12] A. Bressan, P. Baiti & H.K. Jenssen – “An instability of the Godunov scheme”, Preprint. Zbl1122.35074MR2254446
- [13] A. Bressan & R. M. Colombo – “The semigroup generated by conservation laws”, Arch. Rational Mech. Anal. 133 (1995), no. 1, p. 1–75. Zbl0849.35068MR1367356
- [14] A. Bressan, G. Crasta & B. Piccoli – Well-posedness of the Cauchy problem for systems of conservation laws, vol. 146, Mem. Amer. Math. Soc., no. 694, American Mathematical Society, 2000. Zbl0958.35001MR1686652
- [15] A. Bressan & P. Goatin – “Oleinik type estimates and uniqueness for conservation laws”, J. Differential Equations 156 (1999), no. 1, p. 26–49. Zbl0990.35095MR1701818
- [16] A. Bressan & P.G. Le Floch – “Uniqueness of weak solutions to systems of conservation laws”, Arch. Rational Mech. Anal. 140 (1997), no. 4, p. 301–317. Zbl0903.35039MR1489317
- [17] A. Bressan & M. Lewicka – “A uniqueness condition for hyperbolic systems of conservation laws”, Discrete Contin. Dynam. Systems 6 (2000), no. 3, p. 673–682. Zbl1157.35421MR1757395
- [18] A. Bressan, T.-P. Liu & T. Yang – “ stability estimates for conservation laws”, Arch. Ration. Mech. Anal. 149 (1999), no. 1, p. 1–22. Zbl0938.35093MR1723032
- [19] A. Bressan & T. Yang – “On the rate of convergence of the vanishing viscosity approximation”, Preprint, 2003. Zbl1060.35109
- [20] C.M. Dafermos – “The entropy rate admissibility criterion for solutions of hyperbolic conservation laws”, J. Differential Equations14 (1973), p. 202–212. Zbl0262.35038MR328368
- [21] —, Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325, Springer-Verlag, Berlin, 2000. Zbl0940.35002MR1763936
- [22] G. Dal Maso, P.G. Lefloch & F. Murat – “Definition and weak stability of nonconservative products”, J. Math. Pures Appl. (9) 74 (1995), no. 6, p. 483–548. Zbl0853.35068MR1365258
- [23] R.J. DiPerna – “Convergence of approximate solutions to conservation laws”, Arch. Rational Mech. Anal. 82 (1983), no. 1, p. 27–70. Zbl0519.35054MR684413
- [24] J. Glimm – “Solutions in the large for nonlinear hyperbolic systems of equations”, Comm. Pure Appl. Math.18 (1965), p. 697–715. Zbl0141.28902MR194770
- [25] J. Goodman – “Nonlinear asymptotic stability of viscous shock profiles for conservation laws”, Arch. Rational Mech. Anal. 95 (1986), no. 4, p. 325–344. Zbl0631.35058MR853782
- [26] J. Goodman & Z.P. Xin – “Viscous limits for piecewise smooth solutions to systems of conservation laws”, Arch. Rational Mech. Anal. 121 (1992), no. 3, p. 235–265. Zbl0792.35115MR1188982
- [27] O. Guès, G. Métivier, M. Williams & K. Zumbrun – “Multidimensional viscous shocks I, II”, Preprint, 2002. Zbl1058.35163
- [28] T. Iguchi & P.G. Le Floch – “Existence theory for hyperbolic systems of conservation laws with general flux-functions”, Preprint, 2002. Zbl1036.35130MR1991515
- [29] H.K. Jenssen – “Blowup for systems of conservation laws”, SIAM J. Math. Anal. 31 (2000), no. 4, p. 894–908 (electronic). Zbl0969.35091MR1752421
- [30] S. Khruzhkov – “First order quasilinear equations with several space variables”, Math. USSR Sbornik10 (1970), p. 217–243. Zbl0215.16203
- [31] P.D. Lax – “Hyperbolic systems of conservation laws. II”, Comm. Pure Appl. Math.10 (1957), p. 537–566. Zbl0081.08803MR93653
- [32] P.G. Le Floch – Hyperbolic systems of conservation laws, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2002, The theory of classical and nonclassical shock waves. Zbl1019.35001MR1927887
- [33] T.-P. Liu – Admissible solutions of hyperbolic conservation laws, vol. 30, Mem. Amer. Math. Soc., no. 240, American Mathematical Society, 1981. Zbl0446.76058MR603391
- [34] —, Nonlinear stability of shock waves for viscous conservation laws, vol. 56, Mem. Amer. Math. Soc., no. 328, American Mathematical Society, 1985. Zbl0617.35058MR791863
- [35] T.-P. Liu & T. Yang – “A new entropy functional for a scalar conservation law”, Comm. Pure Appl. Math. 52 (1999), no. 11, p. 1427–1442. Zbl0941.35051MR1702712
- [36] —, “Well-posedness theory for hyperbolic conservation laws”, Comm. Pure Appl. Math. 52 (1999), no. 12, p. 1553–1586. Zbl1034.35073MR1711037
- [37] —, “Weak solutions of general systems of hyperbolic conservation laws”, Comm. Math. Phys. 230 (2002), no. 2, p. 289–327. Zbl1041.35038MR1936793
- [38] N.H. Risebro – “A front-tracking alternative to the random choice method”, Proc. Amer. Math. Soc.117 (1993), p. 1125–1139. Zbl0799.35153MR1120511
- [39] F. Rousset – “Viscous approximation of strong shocks of systems of conservation laws”, SIAM J. Math. Anal. 35 (2003), no. 2, p. 492–519 (electronic). Zbl1052.35128MR2001110
- [40] D. Serre – Systems of conservation laws. 1, 2, Cambridge University Press, Cambridge, 2000, Geometric structures, oscillations, and initial-boundary value problems, Translated from the 1996 French original by I. N. Sneddon. Zbl0936.35001MR1775057
- [41] A. Szepessy & Z.P. Xin – “Nonlinear stability of viscous shock waves”, Arch. Rational Mech. Anal. 122 (1993), no. 1, p. 53–103. Zbl0803.35097MR1207241
- [42] A. Szepessy & K. Zumbrun – “Stability of rarefaction waves in viscous media”, Arch. Rational Mech. Anal. 133 (1996), no. 3, p. 249–298. Zbl0861.35037MR1387931
- [43] A. Vanderbauwhede – “Centre manifolds, normal forms and elementary bifurcations”, in Dynamics reported, Vol. 2, Dynam. Report. Ser. Dynam. Systems Appl., vol. 2, Wiley, Chichester, 1989, p. 89–169. Zbl0677.58001MR1000977
- [44] S.-H. Yu – “Zero-dissipation limit of solutions with shocks for systems of hyperbolic conservation laws”, Arch. Ration. Mech. Anal. 146 (1999), no. 4, p. 275–370. Zbl0935.35101MR1718368
- [45] K. Zumbrun – “Multidimensional stability of planar viscous shock waves”, in Advances in the theory of shock waves, Progr. Nonlinear Differential Equations Appl., vol. 47, Birkhäuser Boston, Boston, MA, 2001, p. 307–516. Zbl0989.35089MR1842778
- [46] K. Zumbrun & P. Howard – “Pointwise semigroup methods and stability of viscous shock waves”, Indiana Univ. Math. J. 47 (1998), no. 3, p. 741–871. Zbl0928.35018MR1665788
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.