Displaying similar documents to “Systèmes hyperboliques et viscosité évanescente”

Exemples d’instabilités pour des équations d’ondes non linéaires

Guy Métivier (2002-2003)

Séminaire Bourbaki

Similarity:

Le but de l’exposé est de donner un guide de lecture pour un article de Gilles Lebeau où il est montré que le problème de Cauchy pour l’équation d’onde surcritique ( t 2 - Δ x ) u + u p = 0 est mal posé au sens de Hadamard dans l’espace d’énergie, pour p 7 en dimension 3. La preuve repose sur des constructions d’optique géométrique et des analyses d’instabilité dans des régimes fortement non linéaires. On donnera les étapes de l’analyse en essayant de les situer dans leur contexte plus général : construction...

Problèmes mixtes hyperboliques bien-posés

Jean-François Coulombel (2004)

Journées Équations aux dérivées partielles

Similarity:

On présente une famille de problèmes mixtes hyperboliques linéaires bien-posés au sens de Hadamard. La nouveauté consiste à autoriser une perte de régularité entre les termes source et la solution. On montre ainsi que la condition de Lopatinskii faible est suffisante pour obtenir le caractère bien-posé des problèmes mixtes hyperboliques linéaires.

Solutions globales d’énergie infinie pour l’équation des ondes critique

Pierre Germain (2006-2007)

Séminaire Équations aux dérivées partielles

Similarity:

Nous considérons dans cet article l’équation des ondes semilinéaire critique ( N L W ) 2 * - 1 u + | u | 2 * - 2 u = 0 u | t = 0 = u 0 t u | t = 0 = u 1 , posée dans tout l’espace d , avec 2 * = 2 d d - 2 · Shatah et Struwe [31] ont prouvé que si les données initiales sont d’énergie finie, c’est à dire si ( u 0 , u 1 ) H ˙ 1 × L 2 , alors il existe une solution globale. Planchon [22] a montré que c’est aussi le cas pour certaines données initiales d’énergie infinie : il suffit que les données initiales soient de norme petite dans B ˙ 2 , 1 × B ˙ 2 , 0 . Nous construisons ici des solutions globales...