Betti numbers and applications of the -adic cohomology type II factors
Séminaire Bourbaki (2002-2003)
- Volume: 45, page 321-334
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topConnes, Alain. "Nombres de Betti $L^2$ et facteurs de type ${\rm II}_1$." Séminaire Bourbaki 45 (2002-2003): 321-334. <http://eudml.org/doc/252141>.
@article{Connes2002-2003,
abstract = {Damien Gaboriau a montré récemment que les nombres de Betti $L^2$ des feuilletages mesurés à feuilles contractiles sont des invariants de la relation d’équivalence associée. Sorin Popa a utilisé ce résultat joint à des propriétés de rigidité des facteurs de type II$\{\}_1$ pour en déduire l’existence de facteurs de type II$\{\}_1$ dont le groupe fondamental est trivial.},
author = {Connes, Alain},
journal = {Séminaire Bourbaki},
keywords = {$L^2$ Betti numbers; foliation; type II$\{\}_1$ factor; fundamental group of a type II$\{\}_1$ factor},
language = {fre},
pages = {321-334},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Nombres de Betti $L^2$ et facteurs de type $\{\rm II\}_1$},
url = {http://eudml.org/doc/252141},
volume = {45},
year = {2002-2003},
}
TY - JOUR
AU - Connes, Alain
TI - Nombres de Betti $L^2$ et facteurs de type ${\rm II}_1$
JO - Séminaire Bourbaki
PY - 2002-2003
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 45
SP - 321
EP - 334
AB - Damien Gaboriau a montré récemment que les nombres de Betti $L^2$ des feuilletages mesurés à feuilles contractiles sont des invariants de la relation d’équivalence associée. Sorin Popa a utilisé ce résultat joint à des propriétés de rigidité des facteurs de type II${}_1$ pour en déduire l’existence de facteurs de type II${}_1$ dont le groupe fondamental est trivial.
LA - fre
KW - $L^2$ Betti numbers; foliation; type II${}_1$ factor; fundamental group of a type II${}_1$ factor
UR - http://eudml.org/doc/252141
ER -
References
top- [1] M. Atiyah – “Elliptic operators, discrete groups and von Neumann algebras”, in Colloque “Analyse et Topologie” en l’honneur d’Henri Cartan, Astérisque, vol. 32, Société Mathématique de France, 1976, p. 43–72. Zbl0323.58015MR420729
- [2] F. Boca – “On the method for constructing irreducible finite index subfactors of Popa”, Pacific J. Math.161 (1993), p. 201–231. Zbl0795.46044MR1242197
- [3] A. Borel – “The -cohomology of negatively curved Riemannian symmetric spaces”, Ann. Acad. Sci. Fenn. Ser. A I Math.10 (1985), p. 95–105. Zbl0586.57022MR802471
- [4] J. de Cannière & U. Haagerup – “Multipliers of the Fourier algebra of some simple Lie groups and their discrete subgroups”, Amer. J. Math.107 (1984), p. 455–500. Zbl0577.43002MR784292
- [5] J. Cheeger & M. Gromov – “-cohomology and group cohomology”, Topology25 (1986), p. 189–215. Zbl0597.57020MR837621
- [6] P.-A. Cherix, M. Cowling, P. Jolissaint, P. Julg & A. Valette – Groups with the Haagerup property (Gromov’s a-T-menability), Progress in Math., Birkhäuser, 2001. Zbl1030.43002MR1852148
- [7] M. Choda – “Group factors of the Haagerup type”, Proc. Japan Acad. Ser. A Math. Sci.59 (1983), p. 174–177. Zbl0523.46038MR718798
- [8] A. Connes – “Classification of injective factors”, Ann. of Math.104 (1976), p. 73–115. Zbl0343.46042MR454659
- [9] —, “Sur la théorie non-commutative de l’intégration”, in Algèbres d’opérateurs, Séminaire Les Plans-sur-Bex, 1978, Lect. Notes in Math., vol. 725, Springer, Berlin, 1979, p. 19–143. Zbl0412.46053
- [10] —, “A type II factor with countable fundamental group”, J. Operator Theory4 (1980), p. 151–153. Zbl0455.46056MR587372
- [11] —, “Correspondences”, Notes manuscrites, 1980.
- [12] —, “Classification des facteurs”, Proc. Symp. Pure Math., vol. 38, American Mathematical Society, 1982, p. 43–109. MR679497
- [13] —, Noncommutative geometry, Academic Press, 1994. MR1303779
- [14] A. Connes, J. Feldman & B. Weiss – “An amenable equivalence relation is generated by a single transformation”, Ergodic Theory Dynam. Systems4 (1982), p. 431–450. Zbl0491.28018MR662736
- [15] A. Connes & V.F.R. Jones – “A II factor with two non-conjugate Cartan subalgebras”, Bull. Amer. Math. Soc. (N.S.) 6 (1982), p. 211–212. Zbl0501.46056MR640947
- [16] —, “Property T for von Neumann algebras”, Bull. London Math. Soc.17 (1985), p. 57–62. Zbl0564.05003MR766450
- [17] M. Cowling & U. Haagerup – “Completely bounded multipliers and the Fourier algebra of a simple Lie group of real rank one”, Invent. Math.96 (1989), p. 507–549. Zbl0681.43012MR996553
- [18] C. Delaroche & A. Kirillov – “Sur les relations entre l’espace dual d’un groupe et la structure de ses sous-groupes fermés”, in Sém. Bourbaki (1967/1968), collection hors série de la S.M.F., vol. 10, Société Mathématique de France, 1995, exp. no 343, p. 507–528. Zbl0214.04602MR1610473
- [19] J. Dixmier – “Sous-anneaux abéliens maximaux dans les facteurs de type fini”, Ann. of Math.59 (1954), p. 279–286. Zbl0055.10702MR59486
- [20] H. Dye – “On groups of measure preserving transformations I, II”, Amer. J. Math. 81 (1959), p. 119–159, & 85 (1963), p. 551-576. Zbl0087.11501MR131516
- [21] J. Feldman & C.C. Moore – “Ergodic equivalence relations, cohomology, and von Neumann algebras I, II”, Trans. Amer. Math. Soc. 234 (1977), p. 289–324, 325–359. Zbl0369.22010MR578656
- [22] D. Gaboriau – “Coût des relations d’équivalence et des groupes”, Invent. Math.139 (2000), p. 41–98. Zbl0939.28012MR1728876
- [23] —, “Invariants de relations d’équivalence et de groupes”, Publ. Math. Inst. Hautes Études Sci. (2002). Zbl1022.37002
- [24] L. Ge – “Prime factors”, Proc. Nat. Acad. Sci. U.S.A.93 (1996), p. 12762–12763. Zbl0863.46040MR1417467
- [25] V.Y. Golodets & N.I. Nesonov – “T-property and nonisomorphic factors of type II and III”, J. Funct. Anal.70 (1987), p. 80–89. Zbl0614.46053MR870754
- [26] U. Haagerup – “An example of non-nuclear C-algebra which has the metric approximation property”, Invent. Math.50 (1979), p. 279–293. Zbl0408.46046MR520930
- [27] P. de la Harpe & A. Valette – La propriété T de Kazhdan pour les groupes localement compacts, Astérisque, vol. 175, Société Mathématique de France, 1989. Zbl0759.22001
- [28] G. Hjorth – “A lemma for cost attained”, UCLA preprint, 2002. Zbl1101.37004MR2258624
- [29] R.V. Kadison – “Problems on von Neumann algebras”, Baton Rouge Conference 1867, unpublished. Zbl1043.46045
- [30] D. Kazhdan – “Connection of the dual space of a group with the structure of its closed subgroups”, Functional Anal. Appl.1 (1967), p. 63–65. Zbl0168.27602MR209390
- [31] G. Levitt – “On the cost of generating an equivalence relation ”, Ergodic Theory Dynam. Systems15 (1995), p. 1173–1181. Zbl0843.28010MR1366313
- [32] W. Luck – “Dimension theory of arbitrary modules over finite von Neumann algebras and -Betti numbers II. Applications to Grothendieck groups, -Euler characteristics and Burnside groups”, J. reine angew. Math. 496 (1998), p. 213–236. Zbl1001.55019MR1605818
- [33] G. Margulis – “Discrete groups of motion of manifolds of non-positive curvature”, Am. Math. Soc. Translations.109 (1977), p. 33–45. Zbl0367.57012
- [34] —, “Finitely-additive invariant measures on Euclidian spaces”, Ergodic Theory Dynam. Systems2 (1982), p. 383–396. MR721730
- [35] N. Monod & Y. Shalom – “Orbit equivalence rigidity and bounded cohomology”, preprint. Zbl1129.37003MR2259246
- [36] D. Ornstein & B. Weiss – “Ergodic theory of amenable group actions”, Bull. Amer. Math. Soc. (N.S.) 2 (1980), p. 161–164. Zbl0427.28018MR551753
- [37] N. Ozawa – “Solid von Neumann algebras”, math/0302082. Zbl1072.46040
- [38] —, “There is no separable universal II-factor”, math/0210411.
- [39] N. Ozawa & S. Popa – “Some prime factorisation results for II factors”, math/0302240. Zbl1060.46044
- [40] S. Popa – “On a class of type II factors with Betti numbers invariants”. Zbl1120.46045
- [41] —, “Strong rigidity of II factors coming from malleable actions of weakly rigid groups”, math/0305306. Zbl1120.46044
- [42] —, “Correspondences”, INCREST preprint, unpublished, 1986.
- [43] —, “Free independent sequences in type II factors and related problems”, in Recent advances in operator algebras (Orléans, 1992), Astérisque, vol. 232, Société Mathématique de France, 1995, p. 187–202. Zbl0840.46039MR1372533
- [44] S. Popa & D. Shlyakhtenko – “Cartan subalgebras and bimodule decomposition of II factors”, Math. Scand.92 (2003), p. 93–102. Zbl1067.46055MR1951447
- [45] S. Sakai – C-algebras and W-algebras, Springer-Verlag, Berlin-Heidelberg-New York, 1971. Zbl1024.46001MR442701
- [46] J.-L. Sauvageot – “Sur le produit tensoriel relatif d’espaces de Hilbert”, J. Operator Theory9 (1983), p. 237–252. Zbl0517.46050MR703809
- [47] J.-P. Serre – Arbres, amalgames, SL(2), Astérisque, vol. 46, Société Mathématique de France, 1977. Zbl0369.20013MR476875
- [48] D. Voiculescu – “The analogues of entropy and of Fisher’s information theory in free probability II”, Invent. Math.118 (1994), p. 411–440. Zbl0820.60001MR1296352
- [49] —, “The absence of Cartan subalgebras”, Geom. Funct. Anal.6 (1996), p. 172–199. Zbl0856.60012MR1371236
- [50] R. Zimmer – Ergodic theory and semisimple groups, Birkhäuser-Verlag, Boston, 1984. Zbl0571.58015MR776417
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.