The verification of the Nirenberg-Treves conjecture
Séminaire Bourbaki (2005-2006)
- Volume: 48, page 211-236
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topLerner, Nicolas. "The verification of the Nirenberg-Treves conjecture." Séminaire Bourbaki 48 (2005-2006): 211-236. <http://eudml.org/doc/252146>.
@article{Lerner2005-2006,
abstract = {In a series of recent papers, Nils Dencker proves that condition $(\psi )$ implies the local solvability of principal type pseudodifferential operators (with loss of $\frac\{3\}\{2\}+\epsilon $ derivatives for all positive $\epsilon $), verifying the last part of the Nirenberg-Treves conjecture, formulated in 1971. The origin of this question goes back to the Hans Lewy counterexample, published in 1957. In this text, we follow the pattern of Dencker’s papers, and we provide a proof of local solvability with a loss of $\frac\{3\}\{2\}$ derivatives.},
author = {Lerner, Nicolas},
journal = {Séminaire Bourbaki},
keywords = {résolubilité; opérateurs pseudodifférentiels; estimations d’énergie; opérateurs non autoadjoints},
language = {eng},
pages = {211-236},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {The verification of the Nirenberg-Treves conjecture},
url = {http://eudml.org/doc/252146},
volume = {48},
year = {2005-2006},
}
TY - JOUR
AU - Lerner, Nicolas
TI - The verification of the Nirenberg-Treves conjecture
JO - Séminaire Bourbaki
PY - 2005-2006
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 48
SP - 211
EP - 236
AB - In a series of recent papers, Nils Dencker proves that condition $(\psi )$ implies the local solvability of principal type pseudodifferential operators (with loss of $\frac{3}{2}+\epsilon $ derivatives for all positive $\epsilon $), verifying the last part of the Nirenberg-Treves conjecture, formulated in 1971. The origin of this question goes back to the Hans Lewy counterexample, published in 1957. In this text, we follow the pattern of Dencker’s papers, and we provide a proof of local solvability with a loss of $\frac{3}{2}$ derivatives.
LA - eng
KW - résolubilité; opérateurs pseudodifférentiels; estimations d’énergie; opérateurs non autoadjoints
UR - http://eudml.org/doc/252146
ER -
References
top- [1] G. Bachelard – La formation de l’esprit scientifique, Vrin, Paris, 1938.
- [2] R. Beals & C. Fefferman – “On local solvability of linear partial differential equations”, Ann. of Math. (2) 97 (1973), p. 482–498. Zbl0256.35002MR352746
- [3] J.-M. Bony – “Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés”, Ann. Inst. Fourier (Grenoble) 19 (1969), no. 1, p. 277–304. Zbl0176.09703MR262881
- [4] J.-M. Bony & J.-Y. Chemin – “Espaces fonctionnels associés au calcul de Weyl-Hörmander”, Bull. Soc. Math. France 122 (1994), no. 1, p. 77–118. Zbl0798.35172MR1259109
- [5] J.-M. Bony & N. Lerner – “Quantification asymptotique et microlocalisations d’ordre supérieur. I”, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 3, p. 377–433. Zbl0753.35005MR1011988
- [6] H. Brézis – “On a characterization of flow-invariant sets”, Comm. Pure Appl. Math.23 (1970), p. 261–263. Zbl0191.38703MR257511
- [7] N. Dencker – “On the sufficiency of condition ”, preprint, May 22, 2001.
- [8] —, The solvability of non--solvable operators, 1996, Saint Jean de Monts meeting. Zbl0885.35151
- [9] —, “Estimates and solvability”, Ark. Mat. 37 (1999), no. 2, p. 221–243. Zbl1021.35137MR1714771
- [10] —, “The solvability of pseudodifferential operators”, in Phase space analysis of PDE, Centro de Giorgi, Scuola Normale Superiore, Pisa, 2004, p. 175–200.
- [11] —, “The resolution of the Nirenberg-Treves conjecture”, Ann. of Math. (2) 163 (2006), p. 405–444. Zbl1104.35080MR2199222
- [12] C. Fefferman & D. H. Phong – “On positivity of pseudo-differential operators”, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 10, p. 4673–4674. Zbl0391.35062MR507931
- [13] L. Hörmander – “Private communications”, september 2002 – august 2004.
- [14] —, “On the theory of general partial differential operators”, Acta Math.94 (1955), p. 161–248. Zbl0067.32201MR76151
- [15] —, “Differential equations without solutions”, Math. Ann.140 (1960), p. 169–173. Zbl0093.28903MR147765
- [16] —, “Pseudo-differential operators and non-elliptic boundary problems”, Ann. of Math. (2) 83 (1966), p. 129–209. Zbl0132.07402MR233064
- [17] —, “Propagation of singularities and semiglobal existence theorems for (pseudo)differential operators of principal type”, Ann. of Math. (2) 108 (1978), no. 3, p. 569–609. Zbl0396.35087MR512434
- [18] —, Pseudo-differential operators of principal type. Singularities in boundary value problems, D. Reidel Publ. Co., Dortrecht, Boston, London, 1981.
- [19] —, The analysis of linear partial differential operators I–IV, Grundlehren der Mathematischen Wissenschaften, vols. 256-257, 274-275, Springer-Verlag, Berlin, 1983. Zbl0612.35001MR717035
- [20] —, Notions of convexity, Progress in Mathematics, vol. 127, Birkhäuser Boston Inc., Boston, MA, 1994. Zbl0835.32001MR1301332
- [21] —, “On the solvability of pseudodifferential equations. Structure of solutions of differential equations”, in Proceedings of the Taniguchi Symposium held in Katata, June 26–30, 1995, and the RIMS Symposium held at Kyoto University, Kyoto, July 3–7, 1995 (M. Morimoto & T. Kawai, éds.), World Scientific Publishing Co. Inc., River Edge, NJ, 1996. Zbl0882.00037MR1445329
- [22] N. Lerner – “Cutting the loss of derivatives for solvability under condition ()”, http://hal.ccsd.cnrs.fr/ccsd-00016103, december 2005, to appear in Bull. Soc. Math. France. Zbl1181.35355MR2364944
- [23] —, “Sufficiency of condition for local solvability in two dimensions”, Ann. of Math. (2) 128 (1988), no. 2, p. 243–258. Zbl0682.35112MR960946
- [24] —, “An iff solvability condition for the oblique derivative problem”, Séminaire EDP, École polytechnique, exposé 18, 1990–91.
- [25] —, “Nonsolvability in for a first order operator satisfying condition ”, Ann. of Math. (2) 139 (1994), no. 2, p. 363–393. Zbl0818.35152MR1274095
- [26] —, “Energy methods via coherent states and advanced pseudo-differential calculus”, in Multidimensional complex analysis and partial differential equations (São Carlos, 1995), Contemp. Math., vol. 205, Amer. Math. Soc., Providence, 1997, p. 177–201. Zbl0885.35152MR1447224
- [27] —, “Perturbation and energy estimates”, Ann. Sci. École Norm. Sup. (4) 31 (1998), no. 6, p. 843–886. Zbl0927.35139MR1664214
- [28] —, “When is a pseudo-differential equation solvable?”, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 2, p. 443–460. Zbl0952.35166MR1775357
- [29] —, “Solving pseudo-differential equations”, in Proceedings of the International Congress of Mathematicians II (Beijing 2002), Higher Ed. Press, 2002, p. 711–720. Zbl1106.35337MR1957078
- [30] H. Lewy – “An example of a smooth linear partial differential equation without solution”, Ann. of Math. (2) 66 (1957), p. 155–158. Zbl0078.08104MR88629
- [31] S. Mizohata – “Solutions nulles et solutions non analytiques”, J. Math. Kyoto Univ. 1 (1961/1962), p. 271–302. Zbl0106.29601MR142873
- [32] R. D. Moyer – “Local solvability in two dimensions: necessary conditions for the principal type case”, mimeographed manuscript, University of Kansas, 1978.
- [33] L. Nirenberg & F. Treves – “Solvability of a first order linear partial differential equation”, Comm. Pure Appl. Math.16 (1963), p. 331–351. Zbl0117.06104MR163045
- [34] —, “On local solvability of linear partial differential equations I. Necessary conditions”, Comm. Pure Appl. Math.23 (1970), p. 1–38. Zbl0191.39103MR264470
- [35] —, “On local solvability of linear partial differential equations II. Sufficient conditions”, Comm. Pure Appl. Math.23 (1970), p. 459–509. Zbl0208.35902MR264471
- [36] —, “A correction to: “On local solvability of linear partial differential equations II. Sufficient conditions” (Comm. Pure Appl. Math. 23 (1970), p. 459–509)”, Comm. Pure Appl. Math. 24 (1971), no. 2, p. 279–288. Zbl0221.35019MR435641
- [37] J.-M. Trépreau – “Sur la résolubilité analytique microlocale des opérateurs pseudo-différentiels de type principal”, Thèse, Université de Reims, 1984.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.