Modulation invariant and multilinear singular integral operators

Michael Christ

Séminaire Bourbaki (2005-2006)

  • Volume: 48, page 295-320
  • ISSN: 0303-1179

Abstract

top
In a series of papers beginning in the late 1990s, Michael Lacey and Christoph Thiele have resolved a longstanding conjecture of Calderón regarding certain very singular integral operators, given a transparent proof of Carleson’s theorem on the almost everywhere convergence of Fourier series, and initiated a slew of further developments. The hallmarks of these problems are multilinearity as opposed to mere linearity, and especially modulation symmetry. By modulation is meant multiplication by characters exp ( i x ξ ) . I will briefly review some of the conceptual backdrop to these problems, discuss the key concepts which provide the structural basis for the analysis, sketch a proof, and if time permits, mention related unsolved problems. I will attempt to convey an accurate sense of the work, without presenting full details.

How to cite

top

Christ, Michael. "Modulation invariant and multilinear singular integral operators." Séminaire Bourbaki 48 (2005-2006): 295-320. <http://eudml.org/doc/252147>.

@article{Christ2005-2006,
abstract = {In a series of papers beginning in the late 1990s, Michael Lacey and Christoph Thiele have resolved a longstanding conjecture of Calderón regarding certain very singular integral operators, given a transparent proof of Carleson’s theorem on the almost everywhere convergence of Fourier series, and initiated a slew of further developments. The hallmarks of these problems are multilinearity as opposed to mere linearity, and especially modulation symmetry. By modulation is meant multiplication by characters $\exp (i x \xi )$. I will briefly review some of the conceptual backdrop to these problems, discuss the key concepts which provide the structural basis for the analysis, sketch a proof, and if time permits, mention related unsolved problems. I will attempt to convey an accurate sense of the work, without presenting full details.},
author = {Christ, Michael},
journal = {Séminaire Bourbaki},
keywords = {opérateurs d’intégrale singulière; transformée de Hilbert; opérateurs multilinéaires; invariance par modulation; presque orthogonalité; décomposition de l’espace des phases; coefficients de Fourier localisés; opérateur maximalde somme partielle},
language = {eng},
pages = {295-320},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Modulation invariant and multilinear singular integral operators},
url = {http://eudml.org/doc/252147},
volume = {48},
year = {2005-2006},
}

TY - JOUR
AU - Christ, Michael
TI - Modulation invariant and multilinear singular integral operators
JO - Séminaire Bourbaki
PY - 2005-2006
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 48
SP - 295
EP - 320
AB - In a series of papers beginning in the late 1990s, Michael Lacey and Christoph Thiele have resolved a longstanding conjecture of Calderón regarding certain very singular integral operators, given a transparent proof of Carleson’s theorem on the almost everywhere convergence of Fourier series, and initiated a slew of further developments. The hallmarks of these problems are multilinearity as opposed to mere linearity, and especially modulation symmetry. By modulation is meant multiplication by characters $\exp (i x \xi )$. I will briefly review some of the conceptual backdrop to these problems, discuss the key concepts which provide the structural basis for the analysis, sketch a proof, and if time permits, mention related unsolved problems. I will attempt to convey an accurate sense of the work, without presenting full details.
LA - eng
KW - opérateurs d’intégrale singulière; transformée de Hilbert; opérateurs multilinéaires; invariance par modulation; presque orthogonalité; décomposition de l’espace des phases; coefficients de Fourier localisés; opérateur maximalde somme partielle
UR - http://eudml.org/doc/252147
ER -

References

top
  1. [1] J. Bourgain – “On the dimension of Kakeya sets and related maximal inequalities”, Geom. Funct. Anal. 9 (1999), no. 2, p. 256–282. Zbl0930.43005MR1692486
  2. [2] A. P. Calderón – “Uniqueness in the Cauchy problem for partial differential equations.”, Amer. J. Math.80 (1958), p. 16–36. Zbl0080.30302MR104925
  3. [3] —, “Commutators of singular integral operators”, Proc. Nat. Acad. Sci. U.S.A.53 (1965), p. 1092–1099. Zbl0151.16901MR177312
  4. [4] —, “Cauchy integrals on Lipschitz curves and related operators”, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 4, p. 1324–1327. Zbl0373.44003MR466568
  5. [5] A. P. Calderón & A. Zygmund – “On the existence of certain singular integrals”, Acta Math.88 (1952), p. 85–139. Zbl0047.10201MR52553
  6. [6] L. Carleson – “On convergence and growth of partial sumas of Fourier series”, Acta Math.116 (1966), p. 135–157. Zbl0144.06402MR199631
  7. [7] M. Christ – “On certain elementary trilinear operators”, Math. Res. Lett. 8 (2001), no. 1-2, p. 43–56. Zbl1014.42015MR1825259
  8. [8] M. Christ & A. Kiselev – “WKB asymptotic behavior of almost all generalized eigenfunctions for one-dimensional Schrödinger operators with slowly decaying potentials”, J. Funct. Anal. 179 (2001), no. 2, p. 426–447. Zbl0985.34078MR1809117
  9. [9] R. R. Coifman, A. McIntosh & Y. Meyer – “L’intégrale de Cauchy définit un opérateur borné sur L 2 pour les courbes lipschitziennes”, Ann. of Math. (2) 116 (1982), no. 2, p. 361–387. Zbl0497.42012MR672839
  10. [10] R. R. Coifman & Y. Meyer – Au-delà des opérateurs pseudo-différentiels, Astérisque, vol. 57, Soc. Math. France, Paris, 1978. Zbl0483.35082MR518170
  11. [11] —, “Le théorème de Calderón par les “méthodes de variable réelle””, in Séminaire d’Analyse Harmonique 1978–1979, Publ. Math. Orsay 79, vol. 7, Univ. Paris XI, Orsay, 1979, p. 49–55. Zbl0435.30029
  12. [12] —, Ondelettes et opérateurs III. opérateurs multilinéaires, Actualités Mathématiques, Hermann, Paris, 1991. Zbl0745.42012MR1160989
  13. [13] G. David & J.-L. Journé – “A boundedness criterion for generalized Calderón-Zygmund operators”, Ann. of Math. (2) 120 (1984), no. 2, p. 371–397. Zbl0567.47025MR763911
  14. [14] P. Deift & R. Killip – “On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials”, Comm. Math. Phys. 203 (1999), no. 2, p. 341–347. Zbl0934.34075MR1697600
  15. [15] C. Demeter, M. T. Lacey, T. Tao & C. Thiele – “Breaking the duality in the return times theorem”, preprint, math.DS/0601455. Zbl1213.42064MR2420509
  16. [16] C. Demeter, T. Tao & C. Thiele – “Maximal multilinear operators”, preprint, math.CA/0510581. Zbl1268.42034MR2403711
  17. [17] C. Fefferman – “Pointwise convergence of Fourier series”, Ann. of Math. (2) 98 (1973), p. 551–571. Zbl0268.42009MR340926
  18. [18] J. B. Garnett & P. W. Jones – “BMO from dyadic BMO”, Pacific J. Math. 99 (1982), no. 2, p. 351–371. Zbl0516.46021MR658065
  19. [19] N. H. Katz & T. Tao – “Bounds on arithmetic projections, and applications to the Kakeya conjecture”, Math. Res. Lett. 6 (1999), no. 5-6, p. 625–630. Zbl0980.42013MR1739220
  20. [20] A. W. Knapp & E. M. Stein – “Intertwining operators for semisimple groups”, Ann. of Math. (2) 93 (1971), p. 489–578. Zbl0257.22015MR460543
  21. [21] M. T. Lacey & C. M. Thiele – “ L p estimates on the bilinear Hilbert transform for 2 p ”, Ann. of Math. (2) 146 (1997), no. 3, p. 693–724. Zbl0914.46034MR1491450
  22. [22] —, “On Calderón’s conjecture”, Ann. of Math. (2) 149 (1999), no. 2, p. 475–496. Zbl0934.42012
  23. [23] —, “A proof of boundedness of the Carleson operator”, Math. Res. Lett. 7 (2000), no. 4, p. 361–370. Zbl0966.42009MR1783613
  24. [24] C. Muscalu, T. Tao & C. Thiele – “Multi-linear operators given by singular multipliers”, J. Amer. Math. Soc. 15 (2002), no. 2, p. 469–496. Zbl0994.42015MR1887641
  25. [25] —, “A counterexample to a multilinear endpoint question of Christ and Kiselev”, Math. Res. Lett. 10 (2003), no. 2-3, p. 237–246. Zbl1058.34112MR1981900
  26. [26] F. Nazarov, , S. Treil A. Volberg – “The T b -theorem on non-homogeneous spaces”, Acta Math. 190 (2003), no. 2, p. 151–239. Zbl1065.42014MR1998349
  27. [27] H. Pajot – “Capacité analytique et le problème de Painlevé”, in Séminaire Bourbaki (2003/2004), Astérisque, vol. 299, Soc. Math. France, Paris, 2005, exp. no. 936, p. 301–328. Zbl1129.30310MR2167211

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.