Modulation invariant and multilinear singular integral operators
Séminaire Bourbaki (2005-2006)
- Volume: 48, page 295-320
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topChrist, Michael. "Modulation invariant and multilinear singular integral operators." Séminaire Bourbaki 48 (2005-2006): 295-320. <http://eudml.org/doc/252147>.
@article{Christ2005-2006,
abstract = {In a series of papers beginning in the late 1990s, Michael Lacey and Christoph Thiele have resolved a longstanding conjecture of Calderón regarding certain very singular integral operators, given a transparent proof of Carleson’s theorem on the almost everywhere convergence of Fourier series, and initiated a slew of further developments. The hallmarks of these problems are multilinearity as opposed to mere linearity, and especially modulation symmetry. By modulation is meant multiplication by characters $\exp (i x \xi )$. I will briefly review some of the conceptual backdrop to these problems, discuss the key concepts which provide the structural basis for the analysis, sketch a proof, and if time permits, mention related unsolved problems. I will attempt to convey an accurate sense of the work, without presenting full details.},
author = {Christ, Michael},
journal = {Séminaire Bourbaki},
keywords = {opérateurs d’intégrale singulière; transformée de Hilbert; opérateurs multilinéaires; invariance par modulation; presque orthogonalité; décomposition de l’espace des phases; coefficients de Fourier localisés; opérateur maximalde somme partielle},
language = {eng},
pages = {295-320},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Modulation invariant and multilinear singular integral operators},
url = {http://eudml.org/doc/252147},
volume = {48},
year = {2005-2006},
}
TY - JOUR
AU - Christ, Michael
TI - Modulation invariant and multilinear singular integral operators
JO - Séminaire Bourbaki
PY - 2005-2006
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 48
SP - 295
EP - 320
AB - In a series of papers beginning in the late 1990s, Michael Lacey and Christoph Thiele have resolved a longstanding conjecture of Calderón regarding certain very singular integral operators, given a transparent proof of Carleson’s theorem on the almost everywhere convergence of Fourier series, and initiated a slew of further developments. The hallmarks of these problems are multilinearity as opposed to mere linearity, and especially modulation symmetry. By modulation is meant multiplication by characters $\exp (i x \xi )$. I will briefly review some of the conceptual backdrop to these problems, discuss the key concepts which provide the structural basis for the analysis, sketch a proof, and if time permits, mention related unsolved problems. I will attempt to convey an accurate sense of the work, without presenting full details.
LA - eng
KW - opérateurs d’intégrale singulière; transformée de Hilbert; opérateurs multilinéaires; invariance par modulation; presque orthogonalité; décomposition de l’espace des phases; coefficients de Fourier localisés; opérateur maximalde somme partielle
UR - http://eudml.org/doc/252147
ER -
References
top- [1] J. Bourgain – “On the dimension of Kakeya sets and related maximal inequalities”, Geom. Funct. Anal. 9 (1999), no. 2, p. 256–282. Zbl0930.43005MR1692486
- [2] A. P. Calderón – “Uniqueness in the Cauchy problem for partial differential equations.”, Amer. J. Math.80 (1958), p. 16–36. Zbl0080.30302MR104925
- [3] —, “Commutators of singular integral operators”, Proc. Nat. Acad. Sci. U.S.A.53 (1965), p. 1092–1099. Zbl0151.16901MR177312
- [4] —, “Cauchy integrals on Lipschitz curves and related operators”, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 4, p. 1324–1327. Zbl0373.44003MR466568
- [5] A. P. Calderón & A. Zygmund – “On the existence of certain singular integrals”, Acta Math.88 (1952), p. 85–139. Zbl0047.10201MR52553
- [6] L. Carleson – “On convergence and growth of partial sumas of Fourier series”, Acta Math.116 (1966), p. 135–157. Zbl0144.06402MR199631
- [7] M. Christ – “On certain elementary trilinear operators”, Math. Res. Lett. 8 (2001), no. 1-2, p. 43–56. Zbl1014.42015MR1825259
- [8] M. Christ & A. Kiselev – “WKB asymptotic behavior of almost all generalized eigenfunctions for one-dimensional Schrödinger operators with slowly decaying potentials”, J. Funct. Anal. 179 (2001), no. 2, p. 426–447. Zbl0985.34078MR1809117
- [9] R. R. Coifman, A. McIntosh & Y. Meyer – “L’intégrale de Cauchy définit un opérateur borné sur pour les courbes lipschitziennes”, Ann. of Math. (2) 116 (1982), no. 2, p. 361–387. Zbl0497.42012MR672839
- [10] R. R. Coifman & Y. Meyer – Au-delà des opérateurs pseudo-différentiels, Astérisque, vol. 57, Soc. Math. France, Paris, 1978. Zbl0483.35082MR518170
- [11] —, “Le théorème de Calderón par les “méthodes de variable réelle””, in Séminaire d’Analyse Harmonique 1978–1979, Publ. Math. Orsay 79, vol. 7, Univ. Paris XI, Orsay, 1979, p. 49–55. Zbl0435.30029
- [12] —, Ondelettes et opérateurs III. opérateurs multilinéaires, Actualités Mathématiques, Hermann, Paris, 1991. Zbl0745.42012MR1160989
- [13] G. David & J.-L. Journé – “A boundedness criterion for generalized Calderón-Zygmund operators”, Ann. of Math. (2) 120 (1984), no. 2, p. 371–397. Zbl0567.47025MR763911
- [14] P. Deift & R. Killip – “On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials”, Comm. Math. Phys. 203 (1999), no. 2, p. 341–347. Zbl0934.34075MR1697600
- [15] C. Demeter, M. T. Lacey, T. Tao & C. Thiele – “Breaking the duality in the return times theorem”, preprint, math.DS/0601455. Zbl1213.42064MR2420509
- [16] C. Demeter, T. Tao & C. Thiele – “Maximal multilinear operators”, preprint, math.CA/0510581. Zbl1268.42034MR2403711
- [17] C. Fefferman – “Pointwise convergence of Fourier series”, Ann. of Math. (2) 98 (1973), p. 551–571. Zbl0268.42009MR340926
- [18] J. B. Garnett & P. W. Jones – “BMO from dyadic BMO”, Pacific J. Math. 99 (1982), no. 2, p. 351–371. Zbl0516.46021MR658065
- [19] N. H. Katz & T. Tao – “Bounds on arithmetic projections, and applications to the Kakeya conjecture”, Math. Res. Lett. 6 (1999), no. 5-6, p. 625–630. Zbl0980.42013MR1739220
- [20] A. W. Knapp & E. M. Stein – “Intertwining operators for semisimple groups”, Ann. of Math. (2) 93 (1971), p. 489–578. Zbl0257.22015MR460543
- [21] M. T. Lacey & C. M. Thiele – “ estimates on the bilinear Hilbert transform for ”, Ann. of Math. (2) 146 (1997), no. 3, p. 693–724. Zbl0914.46034MR1491450
- [22] —, “On Calderón’s conjecture”, Ann. of Math. (2) 149 (1999), no. 2, p. 475–496. Zbl0934.42012
- [23] —, “A proof of boundedness of the Carleson operator”, Math. Res. Lett. 7 (2000), no. 4, p. 361–370. Zbl0966.42009MR1783613
- [24] C. Muscalu, T. Tao & C. Thiele – “Multi-linear operators given by singular multipliers”, J. Amer. Math. Soc. 15 (2002), no. 2, p. 469–496. Zbl0994.42015MR1887641
- [25] —, “A counterexample to a multilinear endpoint question of Christ and Kiselev”, Math. Res. Lett. 10 (2003), no. 2-3, p. 237–246. Zbl1058.34112MR1981900
- [26] F. Nazarov, , S. Treil A. Volberg – “The -theorem on non-homogeneous spaces”, Acta Math. 190 (2003), no. 2, p. 151–239. Zbl1065.42014MR1998349
- [27] H. Pajot – “Capacité analytique et le problème de Painlevé”, in Séminaire Bourbaki (2003/2004), Astérisque, vol. 299, Soc. Math. France, Paris, 2005, exp. no. 936, p. 301–328. Zbl1129.30310MR2167211
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.