Analytic capacity and the Painlevé Problem
Séminaire Bourbaki (2003-2004)
- Volume: 46, page 301-328
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] L. Ahlfors – “Bounded analytic functions”, Duke Math. J.14 (1947), p. 1–11. Zbl0030.03001MR21108
- [2] L. Ahlfors & A. Beurling – “Conformal invariants and function theoretic null-sets”, Acta Math.83 (1950), p. 101–129. Zbl0041.20301MR36841
- [3] A.P. Calderón – “Cauchy integrals on Lipschitz curves and related operators”, Proc. Nat. Acad. Sci. U.S.A.74 (1977), p. 1324–1327. Zbl0373.44003MR466568
- [4] M. Christ – “A theorem with remarks on analytic capacity and the Cauchy integral”, Colloq. Math. 60-61 (1990), p. 601–628. Zbl0758.42009MR1096400
- [5] —, Lectures on singular integral operators, Regional Conference Series in Mathematics, vol. 77, American Mathematical Society, 1990. Zbl0745.42008MR1104656
- [6] R. Coifman, A. McIntosh & Y. Meyer – “L’opérateur de Cauchy définit un opérateur borné sur sur les courbes lipschitziennes”, Ann. of Math.116 (1982), p. 361–388. Zbl0497.42012MR672839
- [7] R. Coifman & G. Weiss – Analyse harmonique non-commutative sur certains espaces homogènes, Lect. Notes in Math., vol. 242, Springer-Verlag, 1971. Zbl0224.43006MR499948
- [8] G. David – Wavelets and singular integral operators on curves and surfaces, Lect. Notes in Math., vol. 1465, Springer-Verlag, 1991. Zbl0764.42019MR1123480
- [9] —, “Unrectifiable -sets have vanishing analytic capacity”, Rev. Mat. Iberoamericana14 (1998), p. 369–479. Zbl0913.30012MR1654535
- [10] G. David & P. Mattila – “Removable sets for Lipschitz harmonic functions in the plane”, Rev. Mat. Iberoamericana16 (2000), p. 137–215. Zbl0976.30016MR1768535
- [11] G. David & S. Semmes – Singular integrals and rectifiable sets in : Au-delà des graphes lipschitziens, Astérisque, vol. 193, Société Mathématique de France, 1991. Zbl0743.49018
- [12] —, Analysis of and on uniformly rectifiable sets, Mathematical Surveys and Monographs, vol. 38, American Mathematical Society, 1993. Zbl0832.42008MR1251061
- [13] —, “Quantitative rectifiability and Lipschitz mappings”, Trans. Amer. Math. Soc.337 (1993), p. 855–889. Zbl0792.49029MR1132876
- [14] A. Denjoy – “Sur les fonctions analytiques uniformes à singularités discontinues”, C.R. Acad. Sci. Paris149 (1909), p. 258–260. Zbl40.0442.05JFM40.0442.05
- [15] H. Farag – “The Riesz kernels do not give rise to higher dimensional analogues to the Menger-Melnikov curvature”, Publ. Mat.43 (1999), p. 251–260. Zbl0936.42010MR1697524
- [16] J.B. Garnett – “Positive length but zero analytic capacity”, Proc. Amer. Math. Soc.24 (1970), p. 696–699. Zbl0208.09803
- [17] J.B. Garnett & J. Verdera – “Analytic capacity, bilipschitz maps and Cantor sets”, Math. Res. Lett.10 (2003), p. 515–522. Zbl1063.30025MR1995790
- [18] P. Jones – “Rectifiable sets and the traveling salesman problem”, Invent. Math.102 (1990), p. 1–15. Zbl0731.30018MR1069238
- [19] P. Jones & T. Murai – “Positive analytic capacity, but zero Buffon needle probability”, Pacific J. Math.133 (1988), p. 99–114. Zbl0653.30016MR936358
- [20] H. Joyce & P. Mörters – “A set with finite curvature and projections of zero length”, J. Math. Anal. Appl.247 (2000), p. 126–135. Zbl0973.30022MR1766928
- [21] J.-C. Léger – “Rectifiability and Menger curvature”, Ann. of Math.149 (1999), p. 831–869. Zbl0966.28003MR1709304
- [22] J. Mateu, L. Prat & J. Verdera – “The capacity associated to signed Riesz kernels and Wolff potentials”, J. reine angew. Math. 578 (2005), p. 201–223. Zbl1086.31005MR2113895
- [23] J. Mateu & X. Tolsa – “Riesz transforms and harmonic -capacity of Cantor sets”, Proc. London Math. Soc. (3) 89 (2004), p. 676–696. Zbl1089.42009MR2107011
- [24] J. Mateu, X. Tolsa & J. Verdera – “The planar Cantor sets of zero analytic capacity and the local theorem”, J. Amer. Math. Soc.16 (2003), p. 19–28. Zbl1016.30020MR1937197
- [25] P. Mattila – “Smooth maps, null-sets for integral geometric measures and analytic capacity”, Ann. of Math.123 (1986), p. 303–309. Zbl0589.28006MR835764
- [26] —, “Orthogonal projections, Riesz capacities, and Minkowski content”, Indiana Univ. Math. J.39 (1990), p. 185–198. Zbl0682.28003MR1052016
- [27] —, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, 1995. Zbl0819.28004MR1333890
- [28] —, “On the analytic capacity and curvature of some Cantor sets with non--finite length”, Publ. Mat.40 (1996), p. 195–204. Zbl0888.30026MR1397014
- [29] —, “Hausdorff dimension, projections, and the Fourier transform”, Publ. Mat.48 (2004), p. 3–48. Zbl1049.28007MR2044636
- [30] P. Mattila, M. Melnikov & J. Verdera – “The Cauchy integral, analytic capacity, and uniform rectifiability”, Ann. of Math.144 (1996), p. 127–136. Zbl0897.42007MR1405945
- [31] P. Mattila & P.V. Paramonov – “On geometric properties of harmonic -capacity”, Pacific J. Math.171 (1995), p. 469–491. Zbl0852.31004MR1372240
- [32] M. Melnikov – “Analytic capacity : discrete approach and curvature of measure”, Sb. Math.186 (1995), p. 827–846. Zbl0840.30008MR1349014
- [33] M. Melnikov & J. Verdera – “A geometric proof of the boundedness of the Cauchy integral on Lipschitz curves”, Internat. Math. Res. Notices7 (1995), p. 325–331. Zbl0923.42006MR1350687
- [34] F. Nazarov, S. Treil & A. Volberg – “Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces”, Internat. Math. Res. Notices15 (1997), p. 703–726. Zbl0889.42013MR1470373
- [35] —, “Nonhomogeneous theorem which proves Vitushkin’s conjecture”, Preprint no 519, CRM Barcelona, 2002.
- [36] —, “ theorems on nonhomogeneous spaces”, Acta Math.190 (2003), p. 151–239.
- [37] K. Okikiolu – “Characterizations of subsets of rectifiable curves in ”, J. London Math. Soc. (2) 46 (1992), p. 336–348. Zbl0758.57020MR1182488
- [38] P. Painlevé – Leçons sur la théorie analytique des équations différentielles professées à Stockholm, Hermann, 1897. JFM28.0262.01
- [39] H. Pajot – “Conditions quantitatives de rectifiabilité”, Bull. Soc. math. France 125 (1997), p. 15–53. Zbl0890.28004MR1459297
- [40] —, Analytic capacity, rectifiability, Menger curvature and the Cauchy integral, Lect. Notes in Math., vol. 1799, Springer-Verlag, Berlin, 2002. Zbl1043.28002MR1952175
- [41] —, “Le problème géométrique du voyageur de commerce, et ses applications à l’analyse complexe et harmonique”, in Autour du centenaire Lebesgue, Panoramas & Synthèses, vol. 18, Société Mathématique de France, 2004, p. 123–156. Zbl1108.30019
- [42] Y. Peres & B. Solomyak – “How likely is Buffon’s needle to fall near a planar Cantor set ?”, Pacific J. Math.204 (2002), p. 473–496. Zbl1046.28006MR1907902
- [43] L. Prat – “Potential theory of signed Riesz kernels : Capacity and Hausdorff measures”, Internat. Math. Res. Notices19 (2004), p. 937–981. Zbl1082.31002MR2037051
- [44] R. Schul – “Subset of rectifiable curves in Hilbert space and the Analyst’s TSP”, Thèse, Yale University, 2005. Zbl1152.28006MR2707104
- [45] E.M. Stein – Harmonic analysis : real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, 1993. Zbl0821.42001MR1232192
- [46] X. Tolsa – “-boundedness of the Cauchy integral for continuous measures”, Duke Math. J.98 (1999), p. 269–304. Zbl0945.30032MR1695200
- [47] —, “On the analytic capacity ”, Indiana Univ. Math. J.51 (2002), p. 317–343. Zbl1041.31002MR1909292
- [48] —, “Painlevé’s problem and the semiadditivity of analytic capacity”, Acta Math.190 (2003), p. 105–149. Zbl1060.30031MR1982794
- [49] —, “The boundedness of the Cauchy transform implies boundedness of all antisymmetric Calderón-Zygmund operators”, Publ. Mat.48 (2004), p. 445–479. Zbl1066.42013MR2091015
- [50] —, “Bilipschitz maps, analytic capacity, and the Cauchy integral”, Ann. of Math. (2) (à paraître). Zbl1097.30020
- [51] J. Verdera – “The Fall of the doubling condition in Calderón-Zygmund theory”, in Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial 2000), Publ. Mat., 2002, numéro spécial, p. 275–292. Zbl1025.42008MR1964824
- [52] A.G. Vitushkin – “The analytic capacity of sets in approximation theory”, Uspekhi Mat. Nauk 22 (1967), p. 141–199, en russe ; traduction en anglais dans Russian Math. Surveys 22 (1967), p. 139-200. Zbl0164.37701MR229838
- [53] A. Volberg – Calderón-Zygmund capacities and operators on nonhomogeneous spaces, Regional Conference Series in Mathematics, vol. 100, American Mathematical Society, 2003. Zbl1053.42022MR2019058