Parametrization of algebraic structures and density of discriminants
Séminaire Bourbaki (2003-2004)
- Volume: 46, page 267-300
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topBelabas, Karim. "Paramétrisation de structures algébriques et densité de discriminants." Séminaire Bourbaki 46 (2003-2004): 267-300. <http://eudml.org/doc/252158>.
@article{Belabas2003-2004,
abstract = {La composition de Gauss donne une structure de groupe aux orbites de formes quadratiques binaires entières de discriminant $D$, sous l’action de $\mathrm \{SL\}_2$ par changement de variable, essentiellement le groupe des classes de l’ordre quadratique de discriminant $D$. Les domaines fondamentaux associés permettent calculs explicites et évaluation d’ordres moyens. Je présenterai les lois de composition supérieures découvertes par M. Bhargava à partir de la classification des espaces vectoriels préhomogènes réguliers, ainsi que les résultats de densité qu’il obtient ou conjecture, en particulier sur les discriminants de corps de nombres.},
author = {Belabas, Karim},
journal = {Séminaire Bourbaki},
keywords = {prehomogeneous vector space; density; discriminant; composition laws; number rings},
language = {fre},
pages = {267-300},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Paramétrisation de structures algébriques et densité de discriminants},
url = {http://eudml.org/doc/252158},
volume = {46},
year = {2003-2004},
}
TY - JOUR
AU - Belabas, Karim
TI - Paramétrisation de structures algébriques et densité de discriminants
JO - Séminaire Bourbaki
PY - 2003-2004
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 46
SP - 267
EP - 300
AB - La composition de Gauss donne une structure de groupe aux orbites de formes quadratiques binaires entières de discriminant $D$, sous l’action de $\mathrm {SL}_2$ par changement de variable, essentiellement le groupe des classes de l’ordre quadratique de discriminant $D$. Les domaines fondamentaux associés permettent calculs explicites et évaluation d’ordres moyens. Je présenterai les lois de composition supérieures découvertes par M. Bhargava à partir de la classification des espaces vectoriels préhomogènes réguliers, ainsi que les résultats de densité qu’il obtient ou conjecture, en particulier sur les discriminants de corps de nombres.
LA - fre
KW - prehomogeneous vector space; density; discriminant; composition laws; number rings
UR - http://eudml.org/doc/252158
ER -
References
top- [1] K. Belabas – “Crible et -rang des corps quadratiques”, Ann. Inst. Fourier (Grenoble) 46 (1996), p. 909–949. Zbl0853.11088MR1415952
- [2] M. Bhargava – “Higher composition laws”, Thèse, Princeton University, 2001. Zbl1169.11044MR2702004
- [3] —, “Gauss composition and generalizations”, in Ants V, Sydney, Lecture Notes in Comput. Sci., no. 2369, Springer-Verlag, 2002, p. 1–9. Zbl1058.11030MR2041069
- [4] —, “The parametrization of algebraic structures”, Explicit Methods in Number Theory (Oberwolfach). Exposé, 2003.
- [5] —, “Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations”, Ann. of Math. (2) 159 (2004), no. 1, p. 217–250. Zbl1072.11078MR2051392
- [6] —, “Higher composition laws. II. On cubic analogues of Gauss composition”, Ann. of Math. (2) 159 (2004), no. 2, p. 865–886. Zbl1169.11044MR2081442
- [7] —, “Higher composition laws. III. The parametrization of quartic rings”, Ann. of Math. (2) 159 (2004), no. 3, p. 1329–1360. Zbl1169.11045MR2113024
- [8] D.A. Buell – Binary quadratic forms, Springer-Verlag, 1989. Zbl0698.10013MR1012948
- [9] F. Chamizo & H. Iwaniec – “On the Gauss mean-value formula for class number”, Nagoya Math. J.151 (1998), p. 199–208. Zbl0921.11056MR1650293
- [10] H. Cohen – A course in computational algebraic number theory, 3e ’ed., Springer-Verlag, 1996. Zbl0786.11071MR1228206
- [11] —, “Constructing and counting number fields”, in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) (Beijing), Higher Ed. Press, 2002, p. 129–138. Zbl1042.11067MR1957027
- [12] H. Cohen, F. Diaz y Diaz & M. Olivier – “Enumerating quartic dihedral extensions of ”, Compositio Math. 133 (2002), no. 1, p. 65–93. Zbl1050.11104MR1918290
- [13] —, “On the density of discriminants of cyclic extensions of prime degree”, J. reine angew. Math. 550 (2002), p. 169–209. Zbl1004.11063MR1925912
- [14] H. Cohen & H.W. Lenstra, Jr. – “Heuristics on class groups of number fields”, in Number theory, Noordwijkerhout 1983, Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, p. 33–62. Zbl0558.12002MR756082
- [15] H. Cohen & J. Martinet – “Études heuristiques des groupes de classes des corps de nombres”, J. reine angew. Math. 404 (1990), p. 39–76. Zbl0699.12016MR1037430
- [16] D. Cox – Primes of the form , Wiley-Interscience, 1989. Zbl0956.11500MR1028322
- [17] B. Datskovsky & D.J. Wright – “The adelic zeta function associated to the space of binary cubic forms. II. Local theory”, J. reine angew. Math. 367 (1986), p. 27–75. Zbl0575.10016MR839123
- [18] —, “Density of discriminants of cubic extensions”, J. reine angew. Math. 386 (1988), p. 116–138. Zbl0632.12007MR936994
- [19] B.A. Datskovsky – “On Dirichlet series whose coefficients are class numbers of binary quadratic forms”, Nagoya Math. J.142 (1996), p. 95–132. Zbl0874.11062MR1399469
- [20] H. Davenport – “On a principle of Lipschitz”, J. London Math. Soc. 26 (1951), p. 179–183, corrigendum ibid 39 (1964), p. 580. Zbl0125.02703MR43821
- [21] H. Davenport & H. Heilbronn – “On the density of discriminants of cubic fields (ii)”, Proc. Roy. Soc. London Ser. A322 (1971), p. 405–420. Zbl0212.08101MR491593
- [22] B.N. Delone & D.K. Faddeev – The theory of irrationalities of the third degree, Translations of Math. Monographs, vol. 10, American Mathematical Society, 1964. Zbl0133.30202MR160744
- [23] G. Eisenstein – “Untersuchungen über die cubischen Formen mit zwei Variabeln”, J. reine angew. Math. 27 (1844), p. 89–104.
- [24] J. Ellenberg & A. Venkatesh – “The number of extensions of a number field with fixed degree and bounded discriminant”, Ann. of Math., à paraître. Zbl1099.11068
- [25] W.T. Gan, B. Gross & G. Savin – “Fourier coefficients of modular forms on ”, Duke Math. J. 115 (2002), no. 1, p. 105–169. Zbl1165.11315MR1932327
- [26] D. Goldfeld & J. Hoffstein – “Eisenstein series of -integral weight and the mean value of real Dirichlet -series”, Invent. Math. 80 (1985), no. 2, p. 185–208. Zbl0564.10043MR788407
- [27] J.W. Hoffman & J. Morales – “Arithmetic of binary cubic forms”, Enseign. Math. (2) 46 (2000), no. 1-2, p. 61–94. Zbl0999.11021MR1769537
- [28] M.N. Huxley – “Integer points, exponential sums and the Riemann zeta function”, in Number theory for the millennium, II (Urbana, IL, 2000), AK Peters, Natick, MA, 2002, p. 275–290. Zbl1030.11053MR1956254
- [29] J.-i. Igusa – An introduction to the theory of local zeta functions, AMS/IP Studies in Advanced Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2000. Zbl0959.11047MR1743467
- [30] A.C. Kable & A. Yukie – “Prehomogeneous vector spaces and field extensions. II”, Invent. Math. 130 (1997), no. 2, p. 315–344. Zbl0889.12004MR1474160
- [31] M. Kashiwara – “-functions and holonomic systems. Rationality of roots of -functions”, Invent. Math. 38 (1976/77), no. 1, p. 33–53. Zbl0354.35082MR430304
- [32] T. Kimura – “The -functions and holonomy diagrams of irreducible regular prehomogeneous vector spaces”, Nagoya Math. J.85 (1982), p. 1–80. Zbl0451.58035MR648417
- [33] J. Klüners – “On the asymptotics of number fields with given Galois group”, 2003, Explicit Methods in Number Theory (Oberwolfach). Exposé.
- [34] J. Klüners & G. Malle – “Counting nilpotent Galois extensions”, J. reine angew. Math., à paraître. Zbl1052.11075
- [35] P.G. Lejeune Dirichlet – Vorlesungen über Zahlentheorie, Herausgegeben und mit Zusätzen versehen von R. Dedekind. Vierte, umgearbeitete und vermehrte Auflage, Chelsea Publishing Co., New York, 1968. MR237283
- [36] R. Lipschitz – “Über die asymptotischen Gesetze von gewissen Gattungen zahlentheoretischer Funktionen”, Monatsber. der Berl. Acad (1865), §174sqq.
- [37] S. Mäki – On the density of abelian number fields, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes, vol. 54, 1985. Zbl0566.12001MR791087
- [38] G. Malle – “On the distribution of Galois groups”, J. Number Theory 92 (2002), no. 2, p. 315–329. Zbl1022.11058MR1884706
- [39] —, “On the distribution of Galois groups, II”, preprint, 2002. MR1884706
- [40] D.P. Roberts – “Density of cubic field discriminants”, Math. Comp. 70 (2001), no. 236, p. 1699–1705. Zbl0985.11068MR1836927
- [41] H. Rubenthaler – “Formes réelles des espaces préhomogènes irréductibles de type parabolique”, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 1, p. 1–38. Zbl0588.17007MR840712
- [42] H. Saito – “On a classification of prehomogeneous vector spaces over local and global fields”, J. Algebra 187 (1997), no. 2, p. 510–536. Zbl0874.14046MR1430996
- [43] —, “Convergence of the zeta functions of prehomogeneous vector spaces”, Nagoya Math. J.170 (2003), p. 1–31. Zbl1045.11083MR1994885
- [44] M. Sato – “Theory of prehomogeneous vector spaces (algebraic part)–the English translation of Sato’s lecture from Shintani’s note”, Nagoya Math. J. 120 (1990), p. 1–34, traduit du japonais par M. Muro. Zbl0715.22014MR1086566
- [45] M. Sato & T. Kimura – “A classification of irreducible prehomogeneous vector spaces and their relative invariants”, Nagoya Math. J.65 (1977), p. 1–155. Zbl0321.14030MR430336
- [46] M. Sato & T. Shintani – “On zeta functions associated with prehomogenous vector spaces”, Ann. of Math.100 (1974), p. 131–170. Zbl0309.10014MR344230
- [47] J.-P. Serre – “Une “formule de masse” pour les extensions totalement ramifiées de degré donné d’un corps local”, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 22, p. A1031–A1036. Zbl0388.12005MR500361
- [48] D. Shanks – “On Gauss and composition. I, II”, in Number theory and applications (Banff, AB, 1988), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 265, Kluwer Acad. Publ., Dordrecht, 1989, p. 163–178, 179–204. Zbl0691.10011MR1123074
- [49] T. Shintani – “On Dirichlet series whose coefficients are class numbers of integral binary cubic forms”, J. Math. Soc. Japan24 (1972), p. 132–188. Zbl0223.10032MR289428
- [50] —, “On zeta-functions associated with the vector space of quadratic forms”, J. Fac. Sci. Univ. Tokyo Sect. IA Math.22 (1975), p. 25–66. Zbl0313.10041MR384717
- [51] C.L. Siegel – “The average measure of quadratic forms with given determinant and signature”, Ann. of Math. (2) 45 (1944), p. 667–685. Zbl0063.07007MR12642
- [52] È.B. Vinberg – “The classification of nilpotent elements of graded Lie algebras”, Dokl. Akad. Nauk SSSR 225 (1975), no. 4, p. 745–748. Zbl0374.17001MR506488
- [53] S. Wong – “Automorphic forms on and the rank of class groups”, J. reine angew. Math. 515 (1999), p. 125–153. Zbl1005.11059MR1717617
- [54] D.J. Wright – “The adelic zeta function associated to the space of binary cubic forms. I. Global theory”, Math. Ann. 270 (1985), no. 4, p. 503–534. Zbl0533.10020MR776169
- [55] —, “Distribution of discriminants of abelian extensions”, Proc. London Math. Soc. (3) 58 (1989), no. 1, p. 17–50. Zbl0628.12006MR969545
- [56] D.J. Wright & A. Yukie – “Prehomogeneous vector spaces and field extensions”, Invent. Math. 110 (1992), no. 2, p. 283–314. Zbl0803.12004MR1185585
- [57] A. Yukie – Shintani zeta functions, LMS Lect. Notes Series, vol. 183, Cambridge University Press, Cambridge, 1993. Zbl0801.11021MR1267735
- [58] D. Zagier – “Cubic forms and cubic rings”, 2001, Explicit Methods in Number Theory (Oberwolfach). Exposé.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.