Parametrization of algebraic structures and density of discriminants

Karim Belabas

Séminaire Bourbaki (2003-2004)

  • Volume: 46, page 267-300
  • ISSN: 0303-1179

Abstract

top
Gauss composition yields a group structure on the orbits of integer binary quadratic forms of discriminant D , modulo the natural SL 2 action. In essence, it is the class group of the quadratic order of discriminant  D . Associated fundamental domains allow explicit computations and asymptotic evaluation of average orders. I shall present the higher composition laws discovered by M. Bhargava, their roots in the theory of regular prehomogeneous vector spaces, as well as the density results he obtains or conjectures, in particular concerning discriminants of algebraic number fields.

How to cite

top

Belabas, Karim. "Paramétrisation de structures algébriques et densité de discriminants." Séminaire Bourbaki 46 (2003-2004): 267-300. <http://eudml.org/doc/252158>.

@article{Belabas2003-2004,
abstract = {La composition de Gauss donne une structure de groupe aux orbites de formes quadratiques binaires entières de discriminant $D$, sous l’action de $\mathrm \{SL\}_2$ par changement de variable, essentiellement le groupe des classes de l’ordre quadratique de discriminant $D$. Les domaines fondamentaux associés permettent calculs explicites et évaluation d’ordres moyens. Je présenterai les lois de composition supérieures découvertes par M. Bhargava à partir de la classification des espaces vectoriels préhomogènes réguliers, ainsi que les résultats de densité qu’il obtient ou conjecture, en particulier sur les discriminants de corps de nombres.},
author = {Belabas, Karim},
journal = {Séminaire Bourbaki},
keywords = {prehomogeneous vector space; density; discriminant; composition laws; number rings},
language = {fre},
pages = {267-300},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Paramétrisation de structures algébriques et densité de discriminants},
url = {http://eudml.org/doc/252158},
volume = {46},
year = {2003-2004},
}

TY - JOUR
AU - Belabas, Karim
TI - Paramétrisation de structures algébriques et densité de discriminants
JO - Séminaire Bourbaki
PY - 2003-2004
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 46
SP - 267
EP - 300
AB - La composition de Gauss donne une structure de groupe aux orbites de formes quadratiques binaires entières de discriminant $D$, sous l’action de $\mathrm {SL}_2$ par changement de variable, essentiellement le groupe des classes de l’ordre quadratique de discriminant $D$. Les domaines fondamentaux associés permettent calculs explicites et évaluation d’ordres moyens. Je présenterai les lois de composition supérieures découvertes par M. Bhargava à partir de la classification des espaces vectoriels préhomogènes réguliers, ainsi que les résultats de densité qu’il obtient ou conjecture, en particulier sur les discriminants de corps de nombres.
LA - fre
KW - prehomogeneous vector space; density; discriminant; composition laws; number rings
UR - http://eudml.org/doc/252158
ER -

References

top
  1. [1] K. Belabas – “Crible et 3 -rang des corps quadratiques”, Ann. Inst. Fourier (Grenoble) 46 (1996), p. 909–949. Zbl0853.11088MR1415952
  2. [2] M. Bhargava – “Higher composition laws”, Thèse, Princeton University, 2001. Zbl1169.11044MR2702004
  3. [3] —, “Gauss composition and generalizations”, in Ants V, Sydney, Lecture Notes in Comput. Sci., no. 2369, Springer-Verlag, 2002, p. 1–9. Zbl1058.11030MR2041069
  4. [4] —, “The parametrization of algebraic structures”, Explicit Methods in Number Theory (Oberwolfach). Exposé, 2003. 
  5. [5] —, “Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations”, Ann. of Math. (2) 159 (2004), no. 1, p. 217–250. Zbl1072.11078MR2051392
  6. [6] —, “Higher composition laws. II. On cubic analogues of Gauss composition”, Ann. of Math. (2) 159 (2004), no. 2, p. 865–886. Zbl1169.11044MR2081442
  7. [7] —, “Higher composition laws. III. The parametrization of quartic rings”, Ann. of Math. (2) 159 (2004), no. 3, p. 1329–1360. Zbl1169.11045MR2113024
  8. [8] D.A. Buell – Binary quadratic forms, Springer-Verlag, 1989. Zbl0698.10013MR1012948
  9. [9] F. Chamizo & H. Iwaniec – “On the Gauss mean-value formula for class number”, Nagoya Math. J.151 (1998), p. 199–208. Zbl0921.11056MR1650293
  10. [10] H. Cohen – A course in computational algebraic number theory, 3e ’ed., Springer-Verlag, 1996. Zbl0786.11071MR1228206
  11. [11] —, “Constructing and counting number fields”, in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) (Beijing), Higher Ed. Press, 2002, p. 129–138. Zbl1042.11067MR1957027
  12. [12] H. Cohen, F. Diaz y Diaz & M. Olivier – “Enumerating quartic dihedral extensions of ”, Compositio Math. 133 (2002), no. 1, p. 65–93. Zbl1050.11104MR1918290
  13. [13] —, “On the density of discriminants of cyclic extensions of prime degree”, J. reine angew. Math. 550 (2002), p. 169–209. Zbl1004.11063MR1925912
  14. [14] H. Cohen & H.W. Lenstra, Jr. – “Heuristics on class groups of number fields”, in Number theory, Noordwijkerhout 1983, Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, p. 33–62. Zbl0558.12002MR756082
  15. [15] H. Cohen & J. Martinet – “Études heuristiques des groupes de classes des corps de nombres”, J. reine angew. Math. 404 (1990), p. 39–76. Zbl0699.12016MR1037430
  16. [16] D. Cox – Primes of the form x 2 + n y 2 , Wiley-Interscience, 1989. Zbl0956.11500MR1028322
  17. [17] B. Datskovsky & D.J. Wright – “The adelic zeta function associated to the space of binary cubic forms. II. Local theory”, J. reine angew. Math. 367 (1986), p. 27–75. Zbl0575.10016MR839123
  18. [18] —, “Density of discriminants of cubic extensions”, J. reine angew. Math. 386 (1988), p. 116–138. Zbl0632.12007MR936994
  19. [19] B.A. Datskovsky – “On Dirichlet series whose coefficients are class numbers of binary quadratic forms”, Nagoya Math. J.142 (1996), p. 95–132. Zbl0874.11062MR1399469
  20. [20] H. Davenport – “On a principle of Lipschitz”, J. London Math. Soc. 26 (1951), p. 179–183, corrigendum ibid 39 (1964), p. 580. Zbl0125.02703MR43821
  21. [21] H. Davenport & H. Heilbronn – “On the density of discriminants of cubic fields (ii)”, Proc. Roy. Soc. London Ser. A322 (1971), p. 405–420. Zbl0212.08101MR491593
  22. [22] B.N. Delone & D.K. Faddeev – The theory of irrationalities of the third degree, Translations of Math. Monographs, vol. 10, American Mathematical Society, 1964. Zbl0133.30202MR160744
  23. [23] G. Eisenstein – “Untersuchungen über die cubischen Formen mit zwei Variabeln”, J. reine angew. Math. 27 (1844), p. 89–104. 
  24. [24] J. Ellenberg & A. Venkatesh – “The number of extensions of a number field with fixed degree and bounded discriminant”, Ann. of Math., à paraître. Zbl1099.11068
  25. [25] W.T. Gan, B. Gross & G. Savin – “Fourier coefficients of modular forms on G 2 ”, Duke Math. J. 115 (2002), no. 1, p. 105–169. Zbl1165.11315MR1932327
  26. [26] D. Goldfeld & J. Hoffstein – “Eisenstein series of 1 2 -integral weight and the mean value of real Dirichlet L -series”, Invent. Math. 80 (1985), no. 2, p. 185–208. Zbl0564.10043MR788407
  27. [27] J.W. Hoffman & J. Morales – “Arithmetic of binary cubic forms”, Enseign. Math. (2) 46 (2000), no. 1-2, p. 61–94. Zbl0999.11021MR1769537
  28. [28] M.N. Huxley – “Integer points, exponential sums and the Riemann zeta function”, in Number theory for the millennium, II (Urbana, IL, 2000), AK Peters, Natick, MA, 2002, p. 275–290. Zbl1030.11053MR1956254
  29. [29] J.-i. Igusa – An introduction to the theory of local zeta functions, AMS/IP Studies in Advanced Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2000. Zbl0959.11047MR1743467
  30. [30] A.C. Kable & A. Yukie – “Prehomogeneous vector spaces and field extensions. II”, Invent. Math. 130 (1997), no. 2, p. 315–344. Zbl0889.12004MR1474160
  31. [31] M. Kashiwara – “ B -functions and holonomic systems. Rationality of roots of B -functions”, Invent. Math. 38 (1976/77), no. 1, p. 33–53. Zbl0354.35082MR430304
  32. [32] T. Kimura – “The b -functions and holonomy diagrams of irreducible regular prehomogeneous vector spaces”, Nagoya Math. J.85 (1982), p. 1–80. Zbl0451.58035MR648417
  33. [33] J. Klüners – “On the asymptotics of number fields with given Galois group”, 2003, Explicit Methods in Number Theory (Oberwolfach). Exposé. 
  34. [34] J. Klüners & G. Malle – “Counting nilpotent Galois extensions”, J. reine angew. Math., à paraître. Zbl1052.11075
  35. [35] P.G. Lejeune Dirichlet – Vorlesungen über Zahlentheorie, Herausgegeben und mit Zusätzen versehen von R. Dedekind. Vierte, umgearbeitete und vermehrte Auflage, Chelsea Publishing Co., New York, 1968. MR237283
  36. [36] R. Lipschitz – “Über die asymptotischen Gesetze von gewissen Gattungen zahlentheoretischer Funktionen”, Monatsber. der Berl. Acad (1865), §174sqq. 
  37. [37] S. Mäki – On the density of abelian number fields, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes, vol. 54, 1985. Zbl0566.12001MR791087
  38. [38] G. Malle – “On the distribution of Galois groups”, J. Number Theory 92 (2002), no. 2, p. 315–329. Zbl1022.11058MR1884706
  39. [39] —, “On the distribution of Galois groups, II”, preprint, 2002. MR1884706
  40. [40] D.P. Roberts – “Density of cubic field discriminants”, Math. Comp. 70 (2001), no. 236, p. 1699–1705. Zbl0985.11068MR1836927
  41. [41] H. Rubenthaler – “Formes réelles des espaces préhomogènes irréductibles de type parabolique”, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 1, p. 1–38. Zbl0588.17007MR840712
  42. [42] H. Saito – “On a classification of prehomogeneous vector spaces over local and global fields”, J. Algebra 187 (1997), no. 2, p. 510–536. Zbl0874.14046MR1430996
  43. [43] —, “Convergence of the zeta functions of prehomogeneous vector spaces”, Nagoya Math. J.170 (2003), p. 1–31. Zbl1045.11083MR1994885
  44. [44] M. Sato – “Theory of prehomogeneous vector spaces (algebraic part)–the English translation of Sato’s lecture from Shintani’s note”, Nagoya Math. J. 120 (1990), p. 1–34, traduit du japonais par M. Muro. Zbl0715.22014MR1086566
  45. [45] M. Sato & T. Kimura – “A classification of irreducible prehomogeneous vector spaces and their relative invariants”, Nagoya Math. J.65 (1977), p. 1–155. Zbl0321.14030MR430336
  46. [46] M. Sato & T. Shintani – “On zeta functions associated with prehomogenous vector spaces”, Ann. of Math.100 (1974), p. 131–170. Zbl0309.10014MR344230
  47. [47] J.-P. Serre – “Une “formule de masse” pour les extensions totalement ramifiées de degré donné d’un corps local”, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 22, p. A1031–A1036. Zbl0388.12005MR500361
  48. [48] D. Shanks – “On Gauss and composition. I, II”, in Number theory and applications (Banff, AB, 1988), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 265, Kluwer Acad. Publ., Dordrecht, 1989, p. 163–178, 179–204. Zbl0691.10011MR1123074
  49. [49] T. Shintani – “On Dirichlet series whose coefficients are class numbers of integral binary cubic forms”, J. Math. Soc. Japan24 (1972), p. 132–188. Zbl0223.10032MR289428
  50. [50] —, “On zeta-functions associated with the vector space of quadratic forms”, J. Fac. Sci. Univ. Tokyo Sect. IA Math.22 (1975), p. 25–66. Zbl0313.10041MR384717
  51. [51] C.L. Siegel – “The average measure of quadratic forms with given determinant and signature”, Ann. of Math. (2) 45 (1944), p. 667–685. Zbl0063.07007MR12642
  52. [52] È.B. Vinberg – “The classification of nilpotent elements of graded Lie algebras”, Dokl. Akad. Nauk SSSR 225 (1975), no. 4, p. 745–748. Zbl0374.17001MR506488
  53. [53] S. Wong – “Automorphic forms on GL ( 2 ) and the rank of class groups”, J. reine angew. Math. 515 (1999), p. 125–153. Zbl1005.11059MR1717617
  54. [54] D.J. Wright – “The adelic zeta function associated to the space of binary cubic forms. I. Global theory”, Math. Ann. 270 (1985), no. 4, p. 503–534. Zbl0533.10020MR776169
  55. [55] —, “Distribution of discriminants of abelian extensions”, Proc. London Math. Soc. (3) 58 (1989), no. 1, p. 17–50. Zbl0628.12006MR969545
  56. [56] D.J. Wright & A. Yukie – “Prehomogeneous vector spaces and field extensions”, Invent. Math. 110 (1992), no. 2, p. 283–314. Zbl0803.12004MR1185585
  57. [57] A. Yukie – Shintani zeta functions, LMS Lect. Notes Series, vol. 183, Cambridge University Press, Cambridge, 1993. Zbl0801.11021MR1267735
  58. [58] D. Zagier – “Cubic forms and cubic rings”, 2001, Explicit Methods in Number Theory (Oberwolfach). Exposé. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.