The Mumford conjecture
Séminaire Bourbaki (2004-2005)
- Volume: 47, page 247-282
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topPowell, Geoffrey. "The Mumford conjecture." Séminaire Bourbaki 47 (2004-2005): 247-282. <http://eudml.org/doc/252169>.
@article{Powell2004-2005,
abstract = {The Mumford Conjecture asserts that the rational cohomology of the stable moduli space of Riemann surfaces is a polynomial algebra on the Mumford-Morita-Miller characteristic classes; this can be reformulated in terms of the classifying space $B \Gamma _\infty $ derived from the mapping class groups. The conjecture admits a topological generalization, inspired by Tillmann’s theorem that $B \Gamma _\infty $ admits an infinite loop space structure after applying Quillen’s plus construction. The text presents the proof by Madsen and Weiss of the generalized Mumford conjecture.},
author = {Powell, Geoffrey},
journal = {Séminaire Bourbaki},
keywords = {conjecture de Mumford; espace de modules des courbes; groupe modulaire de Teichmüller; théorie de Morse; stratification},
language = {eng},
pages = {247-282},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {The Mumford conjecture},
url = {http://eudml.org/doc/252169},
volume = {47},
year = {2004-2005},
}
TY - JOUR
AU - Powell, Geoffrey
TI - The Mumford conjecture
JO - Séminaire Bourbaki
PY - 2004-2005
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 47
SP - 247
EP - 282
AB - The Mumford Conjecture asserts that the rational cohomology of the stable moduli space of Riemann surfaces is a polynomial algebra on the Mumford-Morita-Miller characteristic classes; this can be reformulated in terms of the classifying space $B \Gamma _\infty $ derived from the mapping class groups. The conjecture admits a topological generalization, inspired by Tillmann’s theorem that $B \Gamma _\infty $ admits an infinite loop space structure after applying Quillen’s plus construction. The text presents the proof by Madsen and Weiss of the generalized Mumford conjecture.
LA - eng
KW - conjecture de Mumford; espace de modules des courbes; groupe modulaire de Teichmüller; théorie de Morse; stratification
UR - http://eudml.org/doc/252169
ER -
References
top- [1] T. Bröcker & K. Jänich – Introduction to differential topology, Cambridge University Press, Cambridge, 1982. MR674117
- [2] C.J. Earle & J. Eells – “A fibre bundle description of Teichmüller theory”, J. Differential Geom.3 (1969), p. 19–43. Zbl0185.32901MR276999
- [3] C.J. Earle & A. Schatz – “Teichmüller theory for surfaces with boundary”, J. Differential Geom.4 (1970), p. 169–185. Zbl0194.52802MR277000
- [4] S. Galatius – “Mod homology of the stable mapping class group”, Topology 43 (2004), no. 5, p. 1105–1132. Zbl1074.57013MR2079997
- [5] R. Hain & E. Looijenga – “Mapping class groups and moduli spaces of curves”, in Algebraic geometry (Santa Cruz, 1995), Proc. Sympos. Pure Math., vol. 62, Providence, RI, 1997, p. 97–142. Zbl0914.14013MR1492535
- [6] J. Harer – “The second homology group of the mapping class group of an orientable surface”, Invent. Math. 72 (1983), no. 2, p. 221–239. Zbl0533.57003MR700769
- [7] —, “Stability of the homology of the mapping class groups of orientable surfaces”, Ann. of Math. (2) 121 (1985), no. 2, p. 215–249. Zbl0579.57005MR786348
- [8] J. Harris & I. Morrison – Moduli of curves, Graduate Texts in Math., vol. 187, Springer-Verlag, New York, 1998. Zbl0913.14005MR1631825
- [9] N.V. Ivanov – “Stabilization of the homology of Teichmüller modular groups”, Algebra i Analiz 1 (1989), no. 3, p. 110–126. Zbl0727.30036MR1015128
- [10] I. Madsen & R.J. Milgram – The classifying spaces for surgery and cobordism of manifolds, Annals of Math. Studies, vol. 92, Princeton University Press, Princeton, NJ, 1979. Zbl0446.57002MR548575
- [11] I. Madsen & U. Tillmann – “The stable mapping class group and ”, Invent. Math. 145 (2001), no. 3, p. 509–544. Zbl1050.55007MR1856399
- [12] I. Madsen & M. Weiss – “The stable moduli space of Riemann surfaces: Mumford’s conjecture”, Preprint, 2004. Zbl1156.14021MR2335797
- [13] D. McDuff & G. Segal – “Homology fibrations and the “group-completion” theorem”, Invent. Math. 31 (1975/76), no. 3, p. 279–284. Zbl0306.55020MR402733
- [14] E.Y. Miller – “The homology of the mapping class group”, J. Differential Geom. 24 (1986), no. 1, p. 1–14. Zbl0618.57005MR857372
- [15] J. Milnor – Lectures on the -cobordism theorem, Princeton University Press, Princeton, NJ, 1965. Zbl0161.20302MR190942
- [16] S. Morita – “Characteristic classes of surface bundles”, Invent. Math. 90 (1987), no. 3, p. 551–577. Zbl0608.57020MR914849
- [17] —, “Structure of the mapping class groups of surfaces: a survey and a prospect”, in Proceedings of the Kirbyfest (Berkeley, CA, 1998), Geom. Topol. Monogr., vol. 2, Geom. Topol. Publ., Coventry, 1999, p. 349–406. Zbl0959.57018MR1734418
- [18] —, Geometry of characteristic classes, Translations of Mathematical Monographs, vol. 199, American Mathematical Society, Providence, RI, 2001, Translated from the 1999 Japanese original, Iwanami Series in Modern Mathematics. Zbl0976.57026MR1826571
- [19] D. Mumford – “Towards an enumerative geometry of the moduli space of curves”, in Arithmetic and geometry, Vol. II, Progress in Math., vol. 36, Birkhäuser, Boston, MA, 1983, p. 271–328. Zbl0554.14008MR717614
- [20] A. Phillips – “Submersions of open manifolds”, Topology6 (1967), p. 171–206. Zbl0204.23701MR208611
- [21] D. Quillen – “Elementary proofs of some results of cobordism theory using Steenrod operations”, Adv. in Math. 7 (1971), p. 29–56 (1971). Zbl0214.50502MR290382
- [22] G. Segal – “Categories and cohomology theories”, Topology13 (1974), p. 293–312. Zbl0284.55016MR353298
- [23] R.E. Stong – Notes on cobordism theory, Math. Notes, Princeton University Press, Princeton, NJ, 1968. Zbl0181.26604MR248858
- [24] U. Tillmann – “On the homotopy of the stable mapping class group”, Invent. Math. 130 (1997), no. 2, p. 257–275. Zbl0891.55019MR1474157
- [25] V.A. Vassiliev – “Topology of spaces of functions without complicated singularities”, Funktsional. Anal. i Prilozhen.93 (1989), p. 24–36. Zbl0731.58009
- [26] —, Complements of discriminants of smooth maps: topology and applications, Translations of Mathematical Monographs, vol. 98, American Mathematical Society, Providence, RI, 1992, Translated from the Russian by B. Goldfarb. Zbl0762.55001MR1168473
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.