The Mumford conjecture

Geoffrey Powell

Séminaire Bourbaki (2004-2005)

  • Volume: 47, page 247-282
  • ISSN: 0303-1179

Abstract

top
The Mumford Conjecture asserts that the rational cohomology of the stable moduli space of Riemann surfaces is a polynomial algebra on the Mumford-Morita-Miller characteristic classes; this can be reformulated in terms of the classifying space B Γ derived from the mapping class groups. The conjecture admits a topological generalization, inspired by Tillmann’s theorem that B Γ admits an infinite loop space structure after applying Quillen’s plus construction. The text presents the proof by Madsen and Weiss of the generalized Mumford conjecture.

How to cite

top

Powell, Geoffrey. "The Mumford conjecture." Séminaire Bourbaki 47 (2004-2005): 247-282. <http://eudml.org/doc/252169>.

@article{Powell2004-2005,
abstract = {The Mumford Conjecture asserts that the rational cohomology of the stable moduli space of Riemann surfaces is a polynomial algebra on the Mumford-Morita-Miller characteristic classes; this can be reformulated in terms of the classifying space $B \Gamma _\infty $ derived from the mapping class groups. The conjecture admits a topological generalization, inspired by Tillmann’s theorem that $B \Gamma _\infty $ admits an infinite loop space structure after applying Quillen’s plus construction. The text presents the proof by Madsen and Weiss of the generalized Mumford conjecture.},
author = {Powell, Geoffrey},
journal = {Séminaire Bourbaki},
keywords = {conjecture de Mumford; espace de modules des courbes; groupe modulaire de Teichmüller; théorie de Morse; stratification},
language = {eng},
pages = {247-282},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {The Mumford conjecture},
url = {http://eudml.org/doc/252169},
volume = {47},
year = {2004-2005},
}

TY - JOUR
AU - Powell, Geoffrey
TI - The Mumford conjecture
JO - Séminaire Bourbaki
PY - 2004-2005
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 47
SP - 247
EP - 282
AB - The Mumford Conjecture asserts that the rational cohomology of the stable moduli space of Riemann surfaces is a polynomial algebra on the Mumford-Morita-Miller characteristic classes; this can be reformulated in terms of the classifying space $B \Gamma _\infty $ derived from the mapping class groups. The conjecture admits a topological generalization, inspired by Tillmann’s theorem that $B \Gamma _\infty $ admits an infinite loop space structure after applying Quillen’s plus construction. The text presents the proof by Madsen and Weiss of the generalized Mumford conjecture.
LA - eng
KW - conjecture de Mumford; espace de modules des courbes; groupe modulaire de Teichmüller; théorie de Morse; stratification
UR - http://eudml.org/doc/252169
ER -

References

top
  1. [1] T. Bröcker & K. Jänich – Introduction to differential topology, Cambridge University Press, Cambridge, 1982. MR674117
  2. [2] C.J. Earle & J. Eells – “A fibre bundle description of Teichmüller theory”, J. Differential Geom.3 (1969), p. 19–43. Zbl0185.32901MR276999
  3. [3] C.J. Earle & A. Schatz – “Teichmüller theory for surfaces with boundary”, J. Differential Geom.4 (1970), p. 169–185. Zbl0194.52802MR277000
  4. [4] S. Galatius – “Mod p homology of the stable mapping class group”, Topology 43 (2004), no. 5, p. 1105–1132. Zbl1074.57013MR2079997
  5. [5] R. Hain & E. Looijenga – “Mapping class groups and moduli spaces of curves”, in Algebraic geometry (Santa Cruz, 1995), Proc. Sympos. Pure Math., vol. 62, Providence, RI, 1997, p. 97–142. Zbl0914.14013MR1492535
  6. [6] J. Harer – “The second homology group of the mapping class group of an orientable surface”, Invent. Math. 72 (1983), no. 2, p. 221–239. Zbl0533.57003MR700769
  7. [7] —, “Stability of the homology of the mapping class groups of orientable surfaces”, Ann. of Math. (2) 121 (1985), no. 2, p. 215–249. Zbl0579.57005MR786348
  8. [8] J. Harris & I. Morrison – Moduli of curves, Graduate Texts in Math., vol. 187, Springer-Verlag, New York, 1998. Zbl0913.14005MR1631825
  9. [9] N.V. Ivanov – “Stabilization of the homology of Teichmüller modular groups”, Algebra i Analiz 1 (1989), no. 3, p. 110–126. Zbl0727.30036MR1015128
  10. [10] I. Madsen & R.J. Milgram – The classifying spaces for surgery and cobordism of manifolds, Annals of Math. Studies, vol. 92, Princeton University Press, Princeton, NJ, 1979. Zbl0446.57002MR548575
  11. [11] I. Madsen & U. Tillmann – “The stable mapping class group and Q ( P + ) ”, Invent. Math. 145 (2001), no. 3, p. 509–544. Zbl1050.55007MR1856399
  12. [12] I. Madsen & M. Weiss – “The stable moduli space of Riemann surfaces: Mumford’s conjecture”, Preprint, 2004. Zbl1156.14021MR2335797
  13. [13] D. McDuff & G. Segal – “Homology fibrations and the “group-completion” theorem”, Invent. Math. 31 (1975/76), no. 3, p. 279–284. Zbl0306.55020MR402733
  14. [14] E.Y. Miller – “The homology of the mapping class group”, J. Differential Geom. 24 (1986), no. 1, p. 1–14. Zbl0618.57005MR857372
  15. [15] J. Milnor – Lectures on the h -cobordism theorem, Princeton University Press, Princeton, NJ, 1965. Zbl0161.20302MR190942
  16. [16] S. Morita – “Characteristic classes of surface bundles”, Invent. Math. 90 (1987), no. 3, p. 551–577. Zbl0608.57020MR914849
  17. [17] —, “Structure of the mapping class groups of surfaces: a survey and a prospect”, in Proceedings of the Kirbyfest (Berkeley, CA, 1998), Geom. Topol. Monogr., vol. 2, Geom. Topol. Publ., Coventry, 1999, p. 349–406. Zbl0959.57018MR1734418
  18. [18] —, Geometry of characteristic classes, Translations of Mathematical Monographs, vol. 199, American Mathematical Society, Providence, RI, 2001, Translated from the 1999 Japanese original, Iwanami Series in Modern Mathematics. Zbl0976.57026MR1826571
  19. [19] D. Mumford – “Towards an enumerative geometry of the moduli space of curves”, in Arithmetic and geometry, Vol. II, Progress in Math., vol. 36, Birkhäuser, Boston, MA, 1983, p. 271–328. Zbl0554.14008MR717614
  20. [20] A. Phillips – “Submersions of open manifolds”, Topology6 (1967), p. 171–206. Zbl0204.23701MR208611
  21. [21] D. Quillen – “Elementary proofs of some results of cobordism theory using Steenrod operations”, Adv. in Math. 7 (1971), p. 29–56 (1971). Zbl0214.50502MR290382
  22. [22] G. Segal – “Categories and cohomology theories”, Topology13 (1974), p. 293–312. Zbl0284.55016MR353298
  23. [23] R.E. Stong – Notes on cobordism theory, Math. Notes, Princeton University Press, Princeton, NJ, 1968. Zbl0181.26604MR248858
  24. [24] U. Tillmann – “On the homotopy of the stable mapping class group”, Invent. Math. 130 (1997), no. 2, p. 257–275. Zbl0891.55019MR1474157
  25. [25] V.A. Vassiliev – “Topology of spaces of functions without complicated singularities”, Funktsional. Anal. i Prilozhen.93 (1989), p. 24–36. Zbl0731.58009
  26. [26] —, Complements of discriminants of smooth maps: topology and applications, Translations of Mathematical Monographs, vol. 98, American Mathematical Society, Providence, RI, 1992, Translated from the Russian by B. Goldfarb. Zbl0762.55001MR1168473

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.