The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 56

Showing per page

Adjunction of n-equivalences and triad connectivity.

Peter J. Witbooi (1995)

Publicacions Matemàtiques

We prove a new adjunction theorem for n-equivalences. This theorem enables us to produce a simple geometric version of proof of the triad connectivity theorem of Blakers and Massey. An important intermediate step is a study of the collapsing map S∨X → S, S being a sphere.

Continuity of projections of natural bundles

Włodzimierz M. Mikulski (1992)

Annales Polonici Mathematici

This paper is a contribution to the axiomatic approach to geometric objects. A collection of a manifold M, a topological space N, a group homomorphism E: Diff(M) → Homeo(N) and a function π: N → M is called a quasi-natural bundle if (1) π ∘ E(f) = f ∘ π for every f ∈ Diff(M) and (2) if f,g ∈ Diff(M) are two diffeomorphisms such that f|U = g|U for some open subset U of M, then E(f)|π^{-1}(U) = E(g)|π^{-1}(U). We give conditions which ensure that π: N → M is continuous. In particular, if (M,N,E,π)...

Double vector spaces

Alena Vanžurová (1987)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Finite spaces and the universal bundle of a group

Peter Witbooi (1997)

Commentationes Mathematicae Universitatis Carolinae

We find sufficient conditions for a cotriad of which the objects are locally trivial fibrations, in order that the push-out be a locally trivial fibration. As an application, the universal G -bundle of a finite group G , and the classifying space is modeled by locally finite spaces. In particular, if G is finite, then the universal G -bundle is the limit of an ascending chain of finite spaces. The bundle projection is a covering projection.

Generalized universal covering spaces and the shape group

Hanspeter Fischer, Andreas Zastrow (2007)

Fundamenta Mathematicae

If a paracompact Hausdorff space X admits a (classical) universal covering space, then the natural homomorphism φ: π₁(X) → π̌₁(X) from the fundamental group to its first shape homotopy group is an isomorphism. We present a partial converse to this result: a path-connected topological space X admits a generalized universal covering space if φ: π₁(X) → π̌₁(X) is injective. This generalized notion of universal covering p: X̃ → X enjoys most of the usual properties, with the possible exception of evenly...

Hopfian and strongly hopfian manifolds

Young Im, Yongkuk Kim (1999)

Fundamenta Mathematicae

Let p: M → B be a proper surjective map defined on an (n+2)-manifold such that each point-preimage is a copy of a hopfian n-manifold. Then we show that p is an approximate fibration over some dense open subset O of the mod 2 continuity set C’ and C’ ∖ O is locally finite. As an application, we show that a hopfian n-manifold N is a codimension-2 fibrator if χ(N) ≠ 0 or H 1 ( N ) 2

Currently displaying 1 – 20 of 56

Page 1 Next