On representation theory of quantum groups at roots of unity
Piotr Kondratowicz; Piotr Podleś
Banach Center Publications (1997)
- Volume: 40, Issue: 1, page 223-248
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] H. H. Andersen, J. Paradowski, Fusion categories arising from semisimple Lie algebras, Commun. Math. Phys. 169, (1995), 563-588. Zbl0827.17010
- [2] G. Cliff, A tensor product theorem for quantum linear groups at even roots of unity, J. Algebra 165, (1994), 566-575. Zbl0812.17012
- [3] C. De Concini, V. Lyubashenko, Quantum function algebra at roots of 1, Preprints di Matematica 5, Scuola Normale Superiore Pisa, February 1993. Zbl0846.17008
- [4] D. V. Gluschenkov, A. V. Lyakhovskaya, Regular Representation of the Quantum Heisenberg Double (q is a root of unity), UUITP - 27/1993, hep-th/9311075.
- [5] M. Jimbo, A q-analogue of U(gl(N+1)), Hecke algebra, and the Yang-Baxter equation. Lett. Math. Phys. 11, (1986), 247-252. Zbl0602.17005
- [6] G. Lusztig, Modular representations and quantum groups, Contemporary Mathematics 82, (1989), 59-77. Zbl0665.20022
- [7] P. Podleś, Complex Quantum Groups and Their Real Representations, Publ. RIMS, Kyoto University 28, (1992), 709-745. Zbl0809.17003
- [8] N. Yu. Reshetikhin, L. A. Takhtadzyan, L. D. Faddeev, Quantization of Lie groups and Lie algebras, Leningrad Math. J., Vol. 1, No. 1, (1990), 193-225 . Zbl0715.17015
- [9] P. Roche, D. Arnaudon, Irreducible Representations of the Quantum Analogue of SU(2), Lett. Math. Phys. 17, (1989), 295-300. Zbl0694.17005
- [10] M. Takeuchi, Some topics on , J. Algebra 147, (1992), 379-410. Zbl0760.16015
- [11] B. Parshall, J. Wang, Quantum linear groups, Memoirs Amer. Math. Soc. 439, Providence, 1991.
- [12] S. L. Woronowicz, Twisted SU(2) group. An example of a noncommutative differential calculus, Publ. RIMS, Kyoto University 23, (1987), 117-181. Zbl0676.46050
- [13] S. L. Woronowicz, Compact Matrix Pseudogroups, Commun. Math. Phys. 111, (1987), 613-665. Zbl0627.58034
- [14] S. L. Woronowicz, Differential Calculus on Compact Matrix Pseudogroups (Quantum Groups), Commun. Math. Phys. 122, (1989), 125-170. Zbl0751.58042
- [15] S. L. Woronowicz, The lecture 'Quantum groups' at Faculty of Physics, University of Warsaw (1990/91)
- [16] S. L. Woronowicz, New quantum deformation of SL(2,𝐂). Hopf algebra level, Rep. Math. Phys. 30, (1991), 259-269. Zbl0759.17010
- [17] S. L. Woronowicz, S. Zakrzewski, Quantum deformations of the Lorentz group. The Hopf *-algebra level, Comp. Math. 90, (1994), 211-243. Zbl0798.16026