Quantum deformations of the Lorentz group. The Hopf-algebra level

S. L. Woronowicz; S. Zakrzewski

Compositio Mathematica (1994)

  • Volume: 90, Issue: 2, page 211-243
  • ISSN: 0010-437X

How to cite

top

Woronowicz, S. L., and Zakrzewski, S.. "Quantum deformations of the Lorentz group. The Hopf-algebra level." Compositio Mathematica 90.2 (1994): 211-243. <http://eudml.org/doc/90273>.

@article{Woronowicz1994,
author = {Woronowicz, S. L., Zakrzewski, S.},
journal = {Compositio Mathematica},
keywords = {Hopf -algebra; 2-dimensional corepresentation; quantum Lorentz groups; Poisson-Lie structures},
language = {eng},
number = {2},
pages = {211-243},
publisher = {Kluwer Academic Publishers},
title = {Quantum deformations of the Lorentz group. The Hopf-algebra level},
url = {http://eudml.org/doc/90273},
volume = {90},
year = {1994},
}

TY - JOUR
AU - Woronowicz, S. L.
AU - Zakrzewski, S.
TI - Quantum deformations of the Lorentz group. The Hopf-algebra level
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 90
IS - 2
SP - 211
EP - 243
LA - eng
KW - Hopf -algebra; 2-dimensional corepresentation; quantum Lorentz groups; Poisson-Lie structures
UR - http://eudml.org/doc/90273
ER -

References

top
  1. [1] Podleś, P. and Woronowicz, S.L.: Quantum deformation of Lorentz group, Commun. Math. Phys.130 (1990) 381-431. Zbl0703.22018MR1059324
  2. [2] Woronowicz, S.L. and Zakrzewski, S.: Quantum Lorentz group having Gauss decomposition property, Publ. R.I.M.S., Kyoto University28 (1992) 809-824. Zbl0811.17012MR1196000
  3. [3] Drinfeld, V.G.: Quantum Groups, pp. 798-820 in Proceeding of the ICM, Berkeley, 1986, AMS 1987. Zbl0667.16003MR934283
  4. [4] Sojbelman, J.S.: Irreducible representations of the algebra of functions on the quantum SU(N) group and Schubert cells, Dokl. Akad. Nauk. SSSR307 (1989) 41-45 (in Russian). Zbl0698.22015
  5. [5] Faddeev, L.D., Reshethikin, N. Yu., and Takhtajan, L.A.: Quantization of Lie groups and Lie algebras, Algebra i analiz1 (1989) 178-206 (in Russian). Zbl0715.17015MR1015339
  6. [6] Manin, Yu. I.: Quantum groups and non-commutative geometry, Pub. C.R.M.Montréal (1988). Zbl0724.17006MR1016381
  7. [7] Manin, Yu. I.:Leçons Collége de France (1989). 
  8. [8] Dubois-Violette, M. and Launer, G.: The quantum group of a non-degenerate bilinear form, Physics LettersB, Vol. 245, No. 2 (1990) 175-177. Zbl1119.16307MR1068703
  9. [9] Podleś, P.: Complex quantum groups and their real representations, Publ. R.I.M.S., Kyoto University28 (1992) 709-745. Zbl0809.17003MR1195996
  10. [10] Woronowicz, S.L.: Compact matrix pseudogroups, Commun. Math. Phys.111 (1987) 613-665. Zbl0627.58034MR901157
  11. [11] Woronowicz, S.L.: New deformation of SL(2, C). Hopf-algebra level, Rep. Math. Phys.30 No. 2 (1991) 259-269. Zbl0759.17010
  12. [12] Zakrzewski, S.: Hopf *-algebra of polynomials on the quantum SL(2, R) for a "unitary" R-matrix, Lett. Math. Phys.22 (1991) 287-289. Zbl0752.17018MR1131752
  13. [13] Zakrzewski, S.: Realifications of complex quantum groups, in Groups and related topics, R. Gielerak et al. (eds.), Kluwer1992, 83-100. Zbl0834.17010MR1205603
  14. [14] Zakrzewski, S.: Poisson structures on the Lorentz group, preprint, Warsaw, March 1993. Zbl0827.17016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.