On the classification of 3-dimensional coloured Lie algebras

Sergei Silvestrov

Banach Center Publications (1997)

  • Volume: 40, Issue: 1, page 159-170
  • ISSN: 0137-6934

Abstract

top
In this paper, complex 3-dimensional Γ-graded ε-skew-symmetric and complex 3-dimensional Γ-graded ε-Lie algebras with either 1-dimensional or zero homogeneous components are classified up to isomorphism.

How to cite

top

Silvestrov, Sergei. "On the classification of 3-dimensional coloured Lie algebras." Banach Center Publications 40.1 (1997): 159-170. <http://eudml.org/doc/252193>.

@article{Silvestrov1997,
abstract = {In this paper, complex 3-dimensional Γ-graded ε-skew-symmetric and complex 3-dimensional Γ-graded ε-Lie algebras with either 1-dimensional or zero homogeneous components are classified up to isomorphism.},
author = {Silvestrov, Sergei},
journal = {Banach Center Publications},
keywords = {classification theorem; coloured Lie algebras; -graded -Lie algebras},
language = {eng},
number = {1},
pages = {159-170},
title = {On the classification of 3-dimensional coloured Lie algebras},
url = {http://eudml.org/doc/252193},
volume = {40},
year = {1997},
}

TY - JOUR
AU - Silvestrov, Sergei
TI - On the classification of 3-dimensional coloured Lie algebras
JO - Banach Center Publications
PY - 1997
VL - 40
IS - 1
SP - 159
EP - 170
AB - In this paper, complex 3-dimensional Γ-graded ε-skew-symmetric and complex 3-dimensional Γ-graded ε-Lie algebras with either 1-dimensional or zero homogeneous components are classified up to isomorphism.
LA - eng
KW - classification theorem; coloured Lie algebras; -graded -Lie algebras
UR - http://eudml.org/doc/252193
ER -

References

top
  1. [1] V. K. Agrawala, Invariants of generalized Lie algebras, Hadronic J. 4 (1981), 444-496. Zbl0455.17002
  2. [2] N. Backhouse, A classification of four-dimensional Lie superalgebras, J. Math. Phys. 19, 11 (1978), 2400-2402. Zbl0421.17002
  3. [3] Yu. A. Bahturin, A. A. Mikhalev, V. M. Petrogradsky and M. V. Zaicev, Infinite Dimensional Lie Superalgebras, Walter de Gruyter, Berlin, 1992. 
  4. [4] R. Carles and Y. Diakité, Sur les variétés d'algèbres de Lie de dimension ≤ 7, J. Algebra 91 (1984), 53-63. 
  5. [5] P. Cartier, Effacement Dans la Cohomologie des Algèbres de Lie, Séminaire Bourbaki 116 (1955), 1-7. 
  6. [6] L. Corwin, Y. Ne'eman and S. Sternberg, Graded Lie algebras in mathematics and physics (Bose-Fermi symmetry ), Rev. Modern Phys. 47, 3 (1975), 573-603. Zbl0557.17004
  7. [7] H. S. Green and P. D. Jarvis, Casimir invariants, characteristic identities and Young diagrams for Colour algebras and superalgebras, J. Math. Phys. 24, 7 (1983), 1681-1687. Zbl0517.17002
  8. [8] M. F. Gorodnii, G. B. Podkolzin, Irreducible representations of a graded Lie algebra, in 'Spectral theory of operators and infinite-dimensional analysis', Institute of Mathematics, Academy of Sciences of Ukraine, Kiev, (1984), 66-77. 
  9. [9] V. G. Kac, Lie Superalgebras, Adv. Math. 26 (1977), 8-96. 
  10. [10] V. G. Kac, Classification of simple Lie superalgebras, Funct. Anal. Appl. 9 (1975), 263-265. Zbl0331.17001
  11. [11] M. V. Karasev, V. P. Maslov, Non-Linear Poisson Brackets. Geometry and Quantization, Trans. Math. Monographs 119, AMS, Providence, 1993. Zbl0776.58003
  12. [12] A. A. Kirillov, Yu. A. Neretin, The variety A n of n-dimensional Lie algebra structures, Am. Math. Soc. Transl. 137 (1987), 21-30. 
  13. [13] R. Kleeman, Commutation factors on generalized Lie algebras, J. Math. Phys. 26, 10 (1985), 2405-2412. Zbl0574.17003
  14. [14] A. K. Kwasniewski, Clifford- and Grassmann- like algebras - Old and new, J. Math. Phys. 26 (1985), 2234-2238. Zbl0583.15018
  15. [15] A. K. Kwasniewski, On Graded Lie-like Algebras, Bulletin de la Société des sciences et des lettres de Łódź 39, 6 (1989). 
  16. [16] J. Lukierski, V. Rittenberg, Color-de Sitter and color-conformal superalgebras, Phys. Rev. D 18, 2 (1978), 385-389. 
  17. [17] G. M. Mubaragzjanov, Classification of the real structures for Lie algebras of fifth order, Izv. Vyssh. Uchebn. Zaved. Mat. 34, 3 (1963), 99-106, (Russian). 
  18. [18] W. Marcinek, Colour extensions of Lie algebras and superalgebras, Preprint 746, University of Wrocław (1990). 
  19. [19] W. Marcinek, Generalized Lie algebras and related topics, Acta Univ. Wratislaviensis (Matematyka, Fizyka, Astronomia) 1170 (1991) I, 3-21, II, 23-52. 
  20. [20] M. V. Mosolova, Functions of non-commuting operators that generate a graded Lie algebra, Mat. Zametki 29 (1981), 34-45. 
  21. [21] Yu. A. Neretin, An estimate for the number of parameters defining an n-dimensional algebra, Izv. Acad. Nauk. SSSR 51, 2 (1987), 306-318. 
  22. [22] V. L. Ostrovskii, S. D. Silvestrov, Representations of the real forms of the graded analogue of a Lie algebra, Ukrain. Mat. Zh. 44, 11 (1992), 1518-1524; (English translation: Ukrainian Math. J. 44, 11 (1993), 1395-1401). 
  23. [23] A. Pais, V. Rittenberg, Semisimple graded Lie algebras, J. Math. Phys. 16 (1975), 2062-2073. Zbl0311.17004
  24. [24] V. Rittenberg, D. Wyler, Generalized Superalgebras, Nucl. Phys. B 139 (1978), 189-202. 
  25. [25] L. E. Ross, Representations of Graded Lie algebras, Trans. Amer. Math. Soc. 120 (1965), 17-23. Zbl0145.25903
  26. [26] Yu. S. Samoilenko, Spectral Theory of Families of Self-adjoint Operators, Kluwer, Dordrecht, 1990. 
  27. [27] M. Scheunert, The Theory of Lie Superalgebras, Lecture Notes in Mathematics 716 (1979), Springer-Verlag. 
  28. [28] M. Scheunert, Generalized Lie algebras, J. Math. Phys. 20, 4 (1979), 712-720. Zbl0423.17003
  29. [29] M. Scheunert, Graded tensor calculus, J. Math. Phys. 24, 11 (1983), 2658-2670. Zbl0547.17003
  30. [30] M. Scheunert, Casimir elements of ε-Lie algebras, J. Math. Phys. 24, 11 (1983), 2671-2680. Zbl0527.17001
  31. [31] S. D. Silvestrov, Hilbert space representations of the graded analogue of the Lie algebra of the group of plane motions, Studia Mathematica 117, 2 (1996), 195-203. (Research report 12, Department of Mathematics, Umeå University, (1994)). Zbl0837.47039
  32. [32] E. B. Vinberg, V. V. Gorbacevich, A. L. Onischik, Structure of Lie groups and algebras, Itogi Nauki i Tekhniki, Sovremennye problemy matematiki, Fundamentalnye napravleniya, VINITI, Moscow 41 (1990), 1-260. 
  33. [33] S. Yamaguchi, On some classes of nilpotent Lie algebras and their automorphism groups, Mem. Fac. Sci. Kyushu Univ. A 35, 2 (1981), 341-351. Zbl0477.17002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.