Fourier integral operators and nonlinear wave equations

Christopher Sogge

Banach Center Publications (1997)

  • Volume: 41, Issue: 1, page 91-108
  • ISSN: 0137-6934

How to cite

top

Sogge, Christopher. "Fourier integral operators and nonlinear wave equations." Banach Center Publications 41.1 (1997): 91-108. <http://eudml.org/doc/252210>.

@article{Sogge1997,
author = {Sogge, Christopher},
journal = {Banach Center Publications},
keywords = {global existence theorem; D'Alembertian; inequality of Stricharz; inhomogeneous wave equation},
language = {eng},
number = {1},
pages = {91-108},
title = {Fourier integral operators and nonlinear wave equations},
url = {http://eudml.org/doc/252210},
volume = {41},
year = {1997},
}

TY - JOUR
AU - Sogge, Christopher
TI - Fourier integral operators and nonlinear wave equations
JO - Banach Center Publications
PY - 1997
VL - 41
IS - 1
SP - 91
EP - 108
LA - eng
KW - global existence theorem; D'Alembertian; inequality of Stricharz; inhomogeneous wave equation
UR - http://eudml.org/doc/252210
ER -

References

top
  1. [1] J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Analyse Math. 47 (1986), 69-85. Zbl0626.42012
  2. [2] G. Eskin, Degenerate elliptic pseudo-differential operators of principal type (Russian), Mat. Sbornik 82 (124) (1970), 585-628; English translation, Math. USSR Sbornik 11 (1970), 539-582. 
  3. [3] V. Georgiev, H. Lindblad and C. D. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math., to appear. Zbl0893.35075
  4. [4] R. Glassey, Finite-time blow-up for solutions of nonlinear wave equations Math. Z. 177, 323-340. Zbl0438.35045
  5. [5] R. Glassey, Existence in the large for ☐u=F(u) in two dimensions, Math. Z 178 (1981), 233-261 Zbl0451.35039
  6. [6] J. Harmse, On Lebesgue space estimates for the wave equation, Indiana Math. J. 39 (1990), 229-248. Zbl0683.35008
  7. [7] L. Hörmander, Fourier integral operators I, Acta Math. 127 (1971), 79-183. Zbl0212.46601
  8. [8] D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Annals of Math. 121 (1985), 463-494. Zbl0593.35119
  9. [9] F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math. 28 (1979), 235-265. Zbl0406.35042
  10. [10] H. Kubo, On the critical decay and power for semilinear wave equations in odd space dimensions, preprint. Zbl0948.35082
  11. [11] H. Lindblad and C. D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (1995), 357-426. Zbl0846.35085
  12. [12] H. Lindblad and C. D. Sogge, Long-time existence for small amplitude semilinear wave equations, Amer. J. Math. 118 (1996), 1047-1135. Zbl0869.35064
  13. [13] H. Lindblad and C. D. Sogge, Restriction theorems and semilinear Klein-Gordon equations in (1+3)-dimensions, Duke Math. J. 85 (1996), 227-252. Zbl0865.35077
  14. [14] C. Müller, On the behavior of the solutions of the differential equation ΔU=F(x,U) in the neighborhood of a point, Comm. Pure Appl. Math. 7 (1954), 505-514. 
  15. [15] J. Schaeffer, The equation u t t - Δ u = | u | p for the critical value of p, Proc. Royal Soc. Edinburgh 101 (1985), 31-44. Zbl0592.35080
  16. [16] A. Seeger, C. D. Sogge and E. M. Stein, Regularity properties of Fourier integral operators, Annals of Math. 134 (1985), 231-251. Zbl0754.58037
  17. [17] T. Sideris, Nonexistence of global solutions of wave equations in high dimensions, Comm. Partial Diff. Equations 12 (1987), 378-406. Zbl0555.35091
  18. [18] C. D. Sogge, Propagation of singularities and maximal functions in the plane, Invent. Math. 104 (1991), 349-376. Zbl0754.35004
  19. [19] C. D. Sogge, Fourier integrals in classical analysis, Cambridge Tracts in Math. 105, Cambridge Univ. Press, Cambridge, 1993. 
  20. [20] C. D. Sogge, Lectures on nonlinear wave equations, International Press, Cambridge, 1995. 
  21. [21] C. D. Sogge and E. M. Stein, Averages of functions over hypersurfaces: Smoothness of generalized Radon transforms, J. Analyse Math. 54, 165-188. Zbl0695.42012
  22. [22] E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482-492. Zbl0072.32402
  23. [23] W. Strauss, Nonlinear scattering theory, Scattering theory in mathematical physics, Reidel, Dordrect, 1979, pp. 53-79. 
  24. [24] W. Strauss, Nonlinear scattering at low energy, J. Funct. Anal. 41 (1981), 110-133. Zbl0466.47006
  25. [25] R. Strichartz, A priori estimates for the wave equation and some applications, J. Funct. Analysis 5 (1970), 218-235. Zbl0189.40701
  26. [26] T. Wolff, A sharp L 3 estimate via incidence geometry, Amer. J. Math. (to appear). 
  27. [27] Y. Zhou, Cauchy problem for semilinear wave equations with small data in four space dimensions, J. Diff. Equations 8 (1995), 135-144. Zbl0836.35099

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.