Displaying similar documents to “Fourier integral operators and nonlinear wave equations”

Resolvent estimates and the decay of the solution to the wave equation with potential

Vladimir Georgiev (2001)

Journées équations aux dérivées partielles

Similarity:

We prove a weighted L estimate for the solution to the linear wave equation with a smooth positive time independent potential. The proof is based on application of generalized Fourier transform for the perturbed Laplace operator and a finite dependence domain argument. We apply this estimate to prove the existence of global small data solution to supercritical semilinear wave equations with potential.

A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations

Serge Alinhac (2002)

Journées équations aux dérivées partielles

Similarity:

The aim of this mini-course is twofold: describe quickly the framework of quasilinear wave equation with small data; and give a detailed sketch of the proofs of the blowup theorems in this framework. The first chapter introduces the main tools and concepts, and presents the main results as solutions of natural conjectures. The second chapter gives a self-contained account of geometric blowup and of its applications to present problem.

Global existence for coupled Klein-Gordon equations with different speeds

Pierre Germain (2011)

Annales de l’institut Fourier

Similarity:

Consider, in dimension 3, a system of coupled Klein-Gordon equations with different speeds, and an arbitrary quadratic nonlinearity. We show, for data which are small, smooth, and localized, that a global solution exists, and that it scatters. The proof relies on the space-time resonance approach; it turns out that the resonant structure of this equation has features which were not studied before, but which are generic in some sense.

Global existence for a quasilinear wave equation outside of star-shaped domains

Hart F. Smith (2001)

Journées équations aux dérivées partielles

Similarity:

This talk describes joint work with Chris Sogge and Markus Keel, in which we establish a global existence theorem for null-type quasilinear wave equations in three space dimensions, where we impose Dirichlet conditions on a smooth, compact star-shaped obstacle 𝒦 3 . The key tool, following Christodoulou [1], is to use the Penrose compactification of Minkowski space. In the case under consideration, this reduces matters to a local existence theorem for a singular obstacle problem. Full details...