Lorentzian geometry in the large
Banach Center Publications (1997)
- Volume: 41, Issue: 1, page 11-20
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topBeem, John. "Lorentzian geometry in the large." Banach Center Publications 41.1 (1997): 11-20. <http://eudml.org/doc/252222>.
@article{Beem1997,
abstract = {Lorentzian geometry in the large has certain similarities and certain fundamental differences from Riemannian geometry in the large. The Morse index theory for timelike geodesics is quite similar to the corresponding theory for Riemannian manifolds. However, results on completeness for Lorentzian manifolds are quite different from the corresponding results for positive definite manifolds. A generalization of global hyperbolicity known as pseudoconvexity is described. It has important implications for geodesic structures.},
author = {Beem, John},
journal = {Banach Center Publications},
keywords = {Lorentzian geometry; Morse theory for geodesics; global hyperbolicity; pseudoconvexity; disprisonment},
language = {eng},
number = {1},
pages = {11-20},
title = {Lorentzian geometry in the large},
url = {http://eudml.org/doc/252222},
volume = {41},
year = {1997},
}
TY - JOUR
AU - Beem, John
TI - Lorentzian geometry in the large
JO - Banach Center Publications
PY - 1997
VL - 41
IS - 1
SP - 11
EP - 20
AB - Lorentzian geometry in the large has certain similarities and certain fundamental differences from Riemannian geometry in the large. The Morse index theory for timelike geodesics is quite similar to the corresponding theory for Riemannian manifolds. However, results on completeness for Lorentzian manifolds are quite different from the corresponding results for positive definite manifolds. A generalization of global hyperbolicity known as pseudoconvexity is described. It has important implications for geodesic structures.
LA - eng
KW - Lorentzian geometry; Morse theory for geodesics; global hyperbolicity; pseudoconvexity; disprisonment
UR - http://eudml.org/doc/252222
ER -
References
top- [1] J. K. Beem and P. E. Ehrlich, Geodesic completeness and stability, Math. Proc. Camb. Phil. Soc. 102 (1987), 319-328. Zbl0643.53048
- [2] J. K. Beem, P. E. Ehrlich, and K. L. Easley, Global Lorentzian Geometry, Second Edition, Pure and Applied Math. Vol. 202, Marcel Dekker, New York, 1996.
- [3] J. K. Beem and S. G. Harris, The generic condition is generic, Gen. Rel. and Grav. 25 (1993), 939-962. Zbl0783.53015
- [4] J. K. Beem and S. G. Harris, Nongeneric null vectors, Gen. Rel. and Grav. 25 (1993), 963-973. Zbl0783.53016
- [5] J. K. Beem, R. J. Low, and P. E. Parker, Spaces of geodesics: products, coverings, connectedeness, Geometriae Dedicata 59 (1996), 51-64. Zbl0847.58009
- [6] J. K. Beem and P. E. Parker, Pseudoconvexity and geodesic connectedness, Annali Math. Pura. Appl. 155 (1989), 137-142. Zbl0695.53022
- [7] J. K. Beem and P. E. Parker, Sectional curvature and tidal accelerations, J. Math. Phys. 31 (1990), 819-827. Zbl0704.53066
- [8] P. T. Chruściel, On Uniqueness in the Large of Solutions of Einstein Equations ('Strong Cosmic Censorship'), Australian University Press, Canberra, 1991.
- [9] G. Galloway, The Lorentzian splitting theorem without completeness assumption, J. Diff. Geom. 29 (1989), 373-387. Zbl0667.53048
- [10] G. Galloway, The Lorentzian version of the Cheeger-Gromoll splitting theorem and its applications to General Relativity, in Differential Geometry: Geometry in Mathematical Physics and Related Topics, ed. R. Greene and S. -T. Yau, Amer. Math. Soc. Proceedings of Symposia in Pure Math., Vol. 54, Part 2 (1993), 249-257. Zbl0792.53060
- [11] D. Gromoll, W. Klingenberg and W. Meyer, Riemannsche Geometrie im Grossen, Lecture Notes in Math. Vol. 55, Springer-Verlag, Berlin, 1975.
- [12] S. W. Hawking, G. F. R. Ellis, The Large Scale Structure of Space-time, Cambridge University Press, Cambridge, 1973 Zbl0265.53054
- [13] N. J. Hicks, Notes on Differential Geometry, D. Van Nostrand, Princeton, New Jersey, 1965. Zbl0132.15104
- [14] H. Hopf and W. Rinow, Über den Begriff des vollständigen differentialgeometrischen Fläche, Comment. Math. Helv. 3 (1931), 209-225. Zbl0002.35004
- [15] S. Kobayashi, Riemannian manifolds without conjugate points, Ann. Math. Pura. Appl. 53 (1961), 149-155. Zbl0100.18101
- [16] A. Królak, Black holes and weak cosmic censorship, Gen. Rel. and Grav. 16 (1984), 365-373. Zbl0537.53064
- [17] A. Królak and W. Rudnicki, Singularities, trapped sets, and cosmic censorship in asymptotically flat space-times, International J. Theoret. Phys. 32 (1993), 137-142. Zbl0782.53079
- [18] B. Mashhoon, Tidal radiation, Astrophys. J. 216 (1977), 591-609.
- [19] B. Mashhoon and J. C. McClune, Relativistic tidal impulse, Month. Notices Royal Astron. Soc. 262 (1993), 881-888.
- [20] R. P. A. C. Newman, A proof of the splitting conjecture of S.-T. Yau, J. Diff. Geom. 31 (1990), 163-184. Zbl0695.53049
- [21] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Pure and Applied Math. Vol. 103, Academic Press, New York, 1983.
- [22] H. -J. Seifert, Global connectivity by timelike geodesics, Zs. f. Naturforsche 22a (1967), 1356-1360. Zbl0163.43701
- [23] P. M. Williams, Completeness and its stability on manifolds with connection, Ph.D. Thesis, Dept. Math. Univ. of Lancaster, 1984.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.