Lorentzian geometry in the large
Banach Center Publications (1997)
- Volume: 41, Issue: 1, page 11-20
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J. K. Beem and P. E. Ehrlich, Geodesic completeness and stability, Math. Proc. Camb. Phil. Soc. 102 (1987), 319-328. Zbl0643.53048
- [2] J. K. Beem, P. E. Ehrlich, and K. L. Easley, Global Lorentzian Geometry, Second Edition, Pure and Applied Math. Vol. 202, Marcel Dekker, New York, 1996.
- [3] J. K. Beem and S. G. Harris, The generic condition is generic, Gen. Rel. and Grav. 25 (1993), 939-962. Zbl0783.53015
- [4] J. K. Beem and S. G. Harris, Nongeneric null vectors, Gen. Rel. and Grav. 25 (1993), 963-973. Zbl0783.53016
- [5] J. K. Beem, R. J. Low, and P. E. Parker, Spaces of geodesics: products, coverings, connectedeness, Geometriae Dedicata 59 (1996), 51-64. Zbl0847.58009
- [6] J. K. Beem and P. E. Parker, Pseudoconvexity and geodesic connectedness, Annali Math. Pura. Appl. 155 (1989), 137-142. Zbl0695.53022
- [7] J. K. Beem and P. E. Parker, Sectional curvature and tidal accelerations, J. Math. Phys. 31 (1990), 819-827. Zbl0704.53066
- [8] P. T. Chruściel, On Uniqueness in the Large of Solutions of Einstein Equations ('Strong Cosmic Censorship'), Australian University Press, Canberra, 1991.
- [9] G. Galloway, The Lorentzian splitting theorem without completeness assumption, J. Diff. Geom. 29 (1989), 373-387. Zbl0667.53048
- [10] G. Galloway, The Lorentzian version of the Cheeger-Gromoll splitting theorem and its applications to General Relativity, in Differential Geometry: Geometry in Mathematical Physics and Related Topics, ed. R. Greene and S. -T. Yau, Amer. Math. Soc. Proceedings of Symposia in Pure Math., Vol. 54, Part 2 (1993), 249-257. Zbl0792.53060
- [11] D. Gromoll, W. Klingenberg and W. Meyer, Riemannsche Geometrie im Grossen, Lecture Notes in Math. Vol. 55, Springer-Verlag, Berlin, 1975.
- [12] S. W. Hawking, G. F. R. Ellis, The Large Scale Structure of Space-time, Cambridge University Press, Cambridge, 1973 Zbl0265.53054
- [13] N. J. Hicks, Notes on Differential Geometry, D. Van Nostrand, Princeton, New Jersey, 1965. Zbl0132.15104
- [14] H. Hopf and W. Rinow, Über den Begriff des vollständigen differentialgeometrischen Fläche, Comment. Math. Helv. 3 (1931), 209-225. Zbl0002.35004
- [15] S. Kobayashi, Riemannian manifolds without conjugate points, Ann. Math. Pura. Appl. 53 (1961), 149-155. Zbl0100.18101
- [16] A. Królak, Black holes and weak cosmic censorship, Gen. Rel. and Grav. 16 (1984), 365-373. Zbl0537.53064
- [17] A. Królak and W. Rudnicki, Singularities, trapped sets, and cosmic censorship in asymptotically flat space-times, International J. Theoret. Phys. 32 (1993), 137-142. Zbl0782.53079
- [18] B. Mashhoon, Tidal radiation, Astrophys. J. 216 (1977), 591-609.
- [19] B. Mashhoon and J. C. McClune, Relativistic tidal impulse, Month. Notices Royal Astron. Soc. 262 (1993), 881-888.
- [20] R. P. A. C. Newman, A proof of the splitting conjecture of S.-T. Yau, J. Diff. Geom. 31 (1990), 163-184. Zbl0695.53049
- [21] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Pure and Applied Math. Vol. 103, Academic Press, New York, 1983.
- [22] H. -J. Seifert, Global connectivity by timelike geodesics, Zs. f. Naturforsche 22a (1967), 1356-1360. Zbl0163.43701
- [23] P. M. Williams, Completeness and its stability on manifolds with connection, Ph.D. Thesis, Dept. Math. Univ. of Lancaster, 1984.