A Morse theory for light rays on stably causal lorentzian manifolds
In this paper we study the -stability of closed hypersurfaces with constant -th mean curvature in Riemannian manifolds of constant sectional curvature. In this setting, we obtain a characterization of the -stable ones through of the analysis of the first eigenvalue of an operator naturally attached to the -th mean curvature.
A new class of relativistic diffusions encompassing all the previously studied examples has recently been introduced in the article of C. Chevalier and F. Debbasch (J. Math. Phys. 49 (2008) 043303), both in a heuristic and analytic way. A stochastic approach of these processes is proposed here, in the general framework of lorentzian geometry. In considering the dynamics of the random motion in strongly causal spacetimes, we are able to give a simple definition of the one-particle distribution function...
I vari metodi di definire connessioni adattate ad un Riferimento fisico vengono qui ricondotti ad un unico formalismo. Viene inoltre introdotta la nozione generale di campo gravitazionale affine adattato (sia al Riferimento che alla connessione).
In questo lavoro si dà una definizione di divergenza fra cronotopi della Relatività Generale e si costruisce un criterio per l'identificazione dei punti eventi di cronotopi divergenti che appartengono ad una classe consistente con la presenza di campi elettromagnetici nel vuoto.
Lorentzian geometry in the large has certain similarities and certain fundamental differences from Riemannian geometry in the large. The Morse index theory for timelike geodesics is quite similar to the corresponding theory for Riemannian manifolds. However, results on completeness for Lorentzian manifolds are quite different from the corresponding results for positive definite manifolds. A generalization of global hyperbolicity known as pseudoconvexity is described. It has important implications...