Formal differential geometry and Nambu-Takhtajan algebra

Yuri Daletskii; Vitaly Kushnirevitch

Banach Center Publications (1997)

  • Volume: 40, Issue: 1, page 293-302
  • ISSN: 0137-6934

How to cite

top

Daletskii, Yuri, and Kushnirevitch, Vitaly. "Formal differential geometry and Nambu-Takhtajan algebra." Banach Center Publications 40.1 (1997): 293-302. <http://eudml.org/doc/252226>.

@article{Daletskii1997,
author = {Daletskii, Yuri, Kushnirevitch, Vitaly},
journal = {Banach Center Publications},
keywords = {graded Lie algebra; de Rham complex},
language = {eng},
number = {1},
pages = {293-302},
title = {Formal differential geometry and Nambu-Takhtajan algebra},
url = {http://eudml.org/doc/252226},
volume = {40},
year = {1997},
}

TY - JOUR
AU - Daletskii, Yuri
AU - Kushnirevitch, Vitaly
TI - Formal differential geometry and Nambu-Takhtajan algebra
JO - Banach Center Publications
PY - 1997
VL - 40
IS - 1
SP - 293
EP - 302
LA - eng
KW - graded Lie algebra; de Rham complex
UR - http://eudml.org/doc/252226
ER -

References

top
  1. [1] I. M. Gelfand and Yu. L. Daletsky, Lie Superalgebras and Hamiltonian Operators. Rep. No. 16 Sem. Supermanifolds, Dept. Math. Univ. Stockholm, 1987, 26 p. 
  2. [2] I. M. Gelfand, Yu. L. Daletskii and B. L. Tsygan, On a Variant of Non-Commutative Differential Geometry. Soviet Math. Dokl. 40 (1990), 2, 422-426. 
  3. [3] I. M. Gelfand and I. Ya. Dorfman, Hamiltonian operators and algebraic structures connected with them. Funct. anal. appl. 13 (1979), 4, 13-30. 
  4. [4] I. M. Gelfand and I. Ya. Dorfman, Hamiltonian operators and infinite dimensional Lie algebras. Funct. anal. appl. 15 (1981), 3, 23-40. 
  5. [5] M. Dubois-Violette, R. Kerner and J. Madore, Noncommutative Differential Geometry of Matrix Algebras. J. Math. Phys. 31 (1990), 2, 316-322. Zbl0704.53081
  6. [6] Yu. L. Daletskii and B. L. Tsygan, Operations on Hochschild and Cyclic Complexes. K -Theorie, (in print). 
  7. [7] Yu. L. Daletskii and B. L. Tsygan, Hamoltonian Operators and Hochschild Homology. Funct. anal. appl. 19 (1985), 4, 82-83. 
  8. [8] A. Cabras and A. M. Vinogradov, Extension of the Poisson Bracket to Differential Forms and Multi-Vector Fields. J. Geom. and Physics, 9 (1992), 75-100. Zbl0748.58008
  9. [9] Yu. L. Daletskii and V. A. Kushnirevitch, Poisson and Nijenhuis Brackets for Differential Forms on Non-Commutative Manifold. SFB 237 - Preprint Nr 274, Institut für Mathemetik, Ruhr-Universität-Bochum, September, 1995. 29 p. 
  10. [10] Y. Nambu, Generalized Hamiltonian Dynamics. Phys. Review D7 (1973), 8, 2405-2412. Zbl1027.70503
  11. [11] L. Takhtajan, On Foundation of the Generalized Nambu Mechanics. Commun. Math. Phys. 160 (1994), 295-315. Zbl0808.70015
  12. [12] L. Takhtajan, Higher Order Analog of Chevalley-Eilenberg Complex and Deformation theory of N -gebras. Algebra and Analysis, 6 (1994), 2, 262-272. Zbl0833.17021
  13. [13] Yu. L. Daletskii, Hamiltonian Operators in Graded Formal Calculus of Variations. Funct. anal. appl. 20 (1986), 2, 62-64. 
  14. [14] B. A. Kupershmidt, Elements of Superintegrable Systems. Reidel, 1987. Zbl0621.58003
  15. [15] A. Connes, Géométrie Non Commutative. InterEditions, 1990. 
  16. [16] S. L. Woronowicz, Differential Calculus on Compact Matrix Pseudogroups (Quantum Groups). Commun. Math. Phys. 122 (1989), 125-170. Zbl0751.58042

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.