From Poisson algebras to Gerstenhaber algebras

Yvette Kosmann-Schwarzbach

Annales de l'institut Fourier (1996)

  • Volume: 46, Issue: 5, page 1243-1274
  • ISSN: 0373-0956

Abstract

top
Constructing an even Poisson algebra from a Gerstenhaber algebra by means of an odd derivation of square 0 is shown to be possible in the category of Loday algebras (algebras with a non-skew-symmetric bracket, generalizing the Lie algebras, heretofore called Leibniz algebras in the literature). Such “derived brackets” give rise to Lie brackets on certain quotient spaces, and also on certain Abelian subalgebras. The construction of these derived brackets explains the origin of the Lie bracket on the space of co-exact differential forms on a Poisson manifold. We further examine the derived brackets on the space of cochains of an associative or Lie algebra. Finally, we relate the previous result to various generalizations of the notion of BV-algebra.

How to cite

top

Kosmann-Schwarzbach, Yvette. "From Poisson algebras to Gerstenhaber algebras." Annales de l'institut Fourier 46.5 (1996): 1243-1274. <http://eudml.org/doc/75211>.

@article{Kosmann1996,
abstract = {Constructing an even Poisson algebra from a Gerstenhaber algebra by means of an odd derivation of square 0 is shown to be possible in the category of Loday algebras (algebras with a non-skew-symmetric bracket, generalizing the Lie algebras, heretofore called Leibniz algebras in the literature). Such “derived brackets” give rise to Lie brackets on certain quotient spaces, and also on certain Abelian subalgebras. The construction of these derived brackets explains the origin of the Lie bracket on the space of co-exact differential forms on a Poisson manifold. We further examine the derived brackets on the space of cochains of an associative or Lie algebra. Finally, we relate the previous result to various generalizations of the notion of BV-algebra.},
author = {Kosmann-Schwarzbach, Yvette},
journal = {Annales de l'institut Fourier},
keywords = {graded Lie algebras; Poisson algebras; Gerstenhaber algebras; Loday algebras; Poisson calculus; Koszul bracket; Vinogradov bracket; cohomology of associative algebras; generalized BV-algebras; Leibniz algebras; cohomology of Lie algebras},
language = {eng},
number = {5},
pages = {1243-1274},
publisher = {Association des Annales de l'Institut Fourier},
title = {From Poisson algebras to Gerstenhaber algebras},
url = {http://eudml.org/doc/75211},
volume = {46},
year = {1996},
}

TY - JOUR
AU - Kosmann-Schwarzbach, Yvette
TI - From Poisson algebras to Gerstenhaber algebras
JO - Annales de l'institut Fourier
PY - 1996
PB - Association des Annales de l'Institut Fourier
VL - 46
IS - 5
SP - 1243
EP - 1274
AB - Constructing an even Poisson algebra from a Gerstenhaber algebra by means of an odd derivation of square 0 is shown to be possible in the category of Loday algebras (algebras with a non-skew-symmetric bracket, generalizing the Lie algebras, heretofore called Leibniz algebras in the literature). Such “derived brackets” give rise to Lie brackets on certain quotient spaces, and also on certain Abelian subalgebras. The construction of these derived brackets explains the origin of the Lie bracket on the space of co-exact differential forms on a Poisson manifold. We further examine the derived brackets on the space of cochains of an associative or Lie algebra. Finally, we relate the previous result to various generalizations of the notion of BV-algebra.
LA - eng
KW - graded Lie algebras; Poisson algebras; Gerstenhaber algebras; Loday algebras; Poisson calculus; Koszul bracket; Vinogradov bracket; cohomology of associative algebras; generalized BV-algebras; Leibniz algebras; cohomology of Lie algebras
UR - http://eudml.org/doc/75211
ER -

References

top
  1. [A] F. AKMAN, On some generalizations of Batalin-Vilkovisky algebras, J. Pure Appl. Alg., to appear. Zbl0885.17020
  2. [BM] J.V. BELTRÁN AND J. MONTERDE, Graded Poisson structures on the algebra of differential forms, Comment. Math. Helvetici, 70 (1995), 383-402. Zbl0844.58025MR96i:58047
  3. [BMP] P. BOUWKNEGT, J. MCCARTHY and K. PILCH, The W3 algebra : modules, semi-infinite cohomology and BV-algebras, preprint hep-th/9509119. Zbl0860.17042
  4. [BP] P. BOUWKNEGT and K. PILCH, The BV-algebra structure of W3 cohomology, Lect. Notes Phys. 447, G. Aktas, C. Sadioglu, M. Serdaroglu, eds. (1995), pp. 283-291. Zbl1052.17503MR96j:17019
  5. [B] C. BUTTIN, Théorie des opérateurs différentiels gradués sur les formes différentielles, Bull. Soc. Math. Fr., 102 (1) (1974), 49-73. Zbl0285.58014MR53 #14525
  6. [CV] A. CABRAS and A.M. VINOGRADOV, Extensions of the Poisson bracket to differential forms and multi-vector fields, J. Geom. Phys., 9 (1992), 75-100. Zbl0748.58008MR93d:17035
  7. [CNS] L. CORWIN, Yu. NEEMAN and S. STERNBERG, Graded Lie algebras in mathematics and physics, Rev. Mod. Phys., 47 (1975), 573-603. Zbl0557.17004
  8. [DK1] Yu.L. DALETSKII and V.A. KUSHNIREVITCH, Poisson and Nijenhuis brackets for differential forms on non-commutative manifolds, Preprint 698/10/95, Univ. Bielefeld. 
  9. [DK2] Yu.L. DALETSKII and V.A. KUSHNIREVITCH, Formal differential geometry and Nambu-Takhtajan algebra, Proc. Conf. “Quantum groups and quantum spaces”, Banach Center Publ., to appear. Zbl0883.17029
  10. [DT] Yu.L. DALETSKY and B.L. TSYGAN, Hamiltonian operators and Hochschild homologies, Funct. Anal. Appl., 19 (4) (1985), 319-321. Zbl0606.58019
  11. [dWL] M. de WILDE and P. LECOMTE, Formal deformations of the Poisson-Lie algebra of a symplectic manifold and star-products, in Deformation Theory of Algebras and Structures and Applications, M. Gerstenhaber and M. Hazewinkel, eds., 897-960, Kluwer, 1988. Zbl0685.58039MR90c:58052
  12. [D] V.G. DRINFELD, Quantum Groups, Proc. Int. Congress Math. Berkeley, Amer. Math. Soc., (1987), 798-820. Zbl0667.16003MR89f:17017
  13. [D-VM] M. DUBOIS-VIOLETTE and P. MICHOR, The Frölicher-Nijenhuis bracket for derivation based non commutative differential forms, J. Pure Appl. Alg., to appear. 
  14. [FGV] M. FLATO, M. GERSTENHABER and A. VORONOV, Cohomology and deformation of Leibniz pairs, Lett. Math. Phys., 34 (1995), 77-90. Zbl0844.17015MR96d:16018
  15. [FN] A. FRÖLICHER and A. NIJENHUIS, Theory of vector-valued differential forms. Part I, Indag. Math., 18 (1956), 338-359. Zbl0079.37502
  16. [GDT] I.M. GELFAND, Yu.L. DALETSKII and B.L. TSYGAN, On a variant of noncommutative differential geometry, Soviet Math. Dokl., 40 (2) (1989), 422-426. Zbl0712.17026
  17. [G] M. GERSTENHABER, The cohomology structure of an associative ring, Ann. Math., 78 (1963), 267-288. Zbl0131.27302MR28 #5102
  18. [GS1] M. GERSTENHABER and S.D. SCHACK, Algebraic cohomology and deformation theory, in Deformation Theory of Algebras and Structures and Applications, M. Gerstenhaber and M. Hazewinkel, eds., ASI C247, 11-264, Kluwer, 1988. Zbl0676.16022MR90c:16016
  19. [GS2] M. GERSTENHABER and S.D. SCHACK, Algebras, bialgebras, quantum groups, and algebraic deformations, Contemporary Math., 134 (1992), 51-92. Zbl0788.17009MR94b:16045
  20. [Gt] E. GETZLER, Batalin-Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys., 159 (1994), 265-285. Zbl0807.17026MR95h:81099
  21. [KiSV] T. KIMURA, J. STASHEFF and A.A. VORONOV, On operad structures of moduli spaces and string theory, Comm. Math. Phys., 171 (1995), 1-25. Zbl0844.57039MR96k:14019
  22. [K-S1] Y. KOSMANN-SCHWARZBACH, Jacobian quasi-bialgebras and quasi-Poisson Lie groups, Contemporary Math., 132 (1992), 459-489. Zbl0847.17020MR94b:17025
  23. [K-S2] Y. KOSMANN-SCHWARZBACH, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Applicandae Math., 41 (1995), 153-165. Zbl0837.17014MR97i:17021
  24. [K-SM] Y. KOSMANN-SCHWARZBACH and F. MAGRI, Poisson-Nijenhuis structures, Ann. Inst. Henri Poincaré, Phys. Théor., 53 (1) (1990), 35-81. Zbl0707.58048MR92b:17026
  25. [Kt] B. KOSTANT, Graded manifolds, graded Lie theory and prequantization, Lect. Notes Math., 570 (1977), 177-30. Zbl0358.53024MR58 #28326
  26. [KtS] B. KOSTANT and S. STERNBERG, Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras, Ann. Phys., 176 (1987), 49-113. Zbl0642.17003MR88m:58057
  27. [K] J.-L. KOSZUL, Crochet de Schouten-Nijenhuis et cohomologie, in Elie Cartan et les mathématiques d'aujourd'hui, Astérisque, hors série (1985), 257-271. Zbl0615.58029MR88m:17013
  28. [Ko] J.-L. KOSZUL, unpublished notes (1990). 
  29. [Kr1] I. KRASILSHCHIK, Schouten bracket and canonical algebras, in Global Analysis, Lect. Notes Math., 1334 (1988), 79-110. Zbl0661.53059MR90i:58055
  30. [Kr2] I. KRASILSHCHIK, Supercanonical algebras and Schouten brackets, Mathematical Notes, 49 (1) (1991), 70-76. Zbl0732.58016MR92c:17025
  31. [LMS] P. LECOMTE, P.W. MICHOR and H. SCHICKETANZ, The multigraded Nijenhuis-Richardson algebra, its universal property and applications, J. Pure Appl. Alg., 77 (1992), 87-102. Zbl0752.17019MR93d:17036
  32. [LR] P.B.A. LECOMTE et C. ROGER, Modules et cohomologie des bigèbres de Lie, C.R. Acad. Sci. Paris, Série I, 310 (1990), 405-410. Zbl0707.17013MR91c:17013
  33. [L1] J.-L. LODAY, Cyclic homology, Grund. Math. Wiss. 301, Springer-Verlag, 1992. Zbl0780.18009MR94a:19004
  34. [L2] J.-L. LODAY, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, L'Enseignement Mathématique, 39 (1993), 269-293. Zbl0806.55009MR95a:19004
  35. [LZ] B.H. LIAN and G.J. ZUCKERMAN, New perspectives on the BRST-algebraic structure in string theory, Comm. Math. Phys., 154 (1993), 613-646. Zbl0780.17029MR94e:81333
  36. [M] P.W. MICHOR, A generalization of Hamiltonian mechanics, J. Geom. Phys., 2 (2) (1985), 67-82. Zbl0587.58004MR87k:58093
  37. [N] A. NIJENHUIS, The graded Lie algebras of an algebra. Indag. Math., 29 (1967), 475-486. Zbl0153.36201MR37 #1420a
  38. [NR] A. NIJENHUIS and R. RICHARDSON, Deformations of Lie algebra structures, J. Math. Mech., 171 (1967), 89-106. Zbl0166.30202MR35 #5485
  39. [PS] M. PENKAVA and A. SCHWARZ, On some algebraic structures arising in string theory, in Perspectives in Mathematical Physics, vol. 3, R. Penner and S.T. Yau, eds., International Press, 1994. Zbl0871.17021MR96b:81121
  40. [R] C. ROGER, Algèbres de Lie graduées et quantification, in Symplectic Geometry and Mathematical Physics, P. Donato et al., eds., Progress in Math. 99, Birkhäuser, (1991), pp. 374-421. Zbl0748.17028MR93f:17045
  41. [Va] I. VAISMAN, Lectures on the Geometry of Poisson Manifolds, Progress in Math. 118, Birkhäuser (1994). Zbl0810.53019MR95h:58057
  42. [V] A.M. VINOGRADOV, Unification of Schouten-Nijenhuis and Frölicher-Nijenhuis brackets, cohomology and super-differential operators, Mat. Zametki, 47 (6), 138-140 (1990). Zbl0712.58059
  43. [W] E. WITTEN, A note on the antibracket formalism, Modern Phys. Lett. A, 5 (7) (1990), 487-494. Zbl1020.81931MR91h:81178

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.