On quantum weyl algebras and generalized quons

WŁadysŁaw Marcinek

Banach Center Publications (1997)

  • Volume: 40, Issue: 1, page 397-402
  • ISSN: 0137-6934

Abstract

top
The model of generalized quons is described in an algebraic way as certain quasiparticle states with statistics determined by a commutation factor on an abelian group. Quantization is described in terms of quantum Weyl algebras. The corresponding commutation relations and scalar product are also given.

How to cite

top

Marcinek, WŁadysŁaw. "On quantum weyl algebras and generalized quons." Banach Center Publications 40.1 (1997): 397-402. <http://eudml.org/doc/252233>.

@article{Marcinek1997,
abstract = {The model of generalized quons is described in an algebraic way as certain quasiparticle states with statistics determined by a commutation factor on an abelian group. Quantization is described in terms of quantum Weyl algebras. The corresponding commutation relations and scalar product are also given.},
author = {Marcinek, WŁadysŁaw},
journal = {Banach Center Publications},
keywords = {generalized quons; quasiparticle states with statistics; quantum Weyl algebras; commutation relations; scalar product},
language = {eng},
number = {1},
pages = {397-402},
title = {On quantum weyl algebras and generalized quons},
url = {http://eudml.org/doc/252233},
volume = {40},
year = {1997},
}

TY - JOUR
AU - Marcinek, WŁadysŁaw
TI - On quantum weyl algebras and generalized quons
JO - Banach Center Publications
PY - 1997
VL - 40
IS - 1
SP - 397
EP - 402
AB - The model of generalized quons is described in an algebraic way as certain quasiparticle states with statistics determined by a commutation factor on an abelian group. Quantization is described in terms of quantum Weyl algebras. The corresponding commutation relations and scalar product are also given.
LA - eng
KW - generalized quons; quasiparticle states with statistics; quantum Weyl algebras; commutation relations; scalar product
UR - http://eudml.org/doc/252233
ER -

References

top
  1. [1] F. Wilczek, Phys. Rev. Lett. 48, 114 (1982). 
  2. [2] O. W. Greenberg, Phys. Rev. Lett. 64 705 (1990), Phys. Rev. D 43, 4111 (1991). 
  3. [3] Y. S. Wu, Phys. Rev. Lett. 52, 2103 (1984), Phys. Rev. Lett. 53, 111 (1984). 
  4. [4] D. I. Fivel, Phys. Rev. Lett. 65, 3361, (1990). 
  5. [5] D. Zagier, Commun. Math. Phys. 147, 199 (1992). 
  6. [6] M. Bożejko, R. Speicher, Interpolation between bosonic and fermionic relations given by generalized Brownian motions. Preprint FSB 132-691, Heildelberg (1992) Zbl0843.60071
  7. [7] M. Scheunert, J. Math. Phys. 20, 712, (1979). 
  8. [8] E. E. Demidov, On some aspects of the theory of quantum groups, Uspekhi Mat. Nauk 48, 39, (1993), in Russ. Zbl0839.17011
  9. [9] A. Borowiec, V. K. Kharchenko, Z. Oziewicz, Calculi on Clifford-Weyl and exterior algebras for Hecke braiding, Conferencia dictata por Zbigniew Oziewicz at Centro de Investigation en Matematicas, Guanajuato, Mexico, Seminario de Geometria, jueves 22 de abril de 1993 and at the Conference on Differential Geometric Methods, Ixtapa, Mexico, September 1993. 
  10. [10] S. Majid, J. Geom. Phys. 13, 169, (1994). 
  11. [11] W. Marcinek, On unital braidings and quantization, Preprint ITP UWr No 847 (1993) and Rep. Math. Phys. 34, 325, (1994). 
  12. [12] W. Marcinek, Noncommutative geometry corresponding to arbitrary braidings, J. Math. Phys. 35, 2633, (1994). Zbl0807.58003
  13. [13] J. C. Baez, R-commutative geometry and quantization of Poisson algebras, Adv. Math. 95, 61 (1992). Zbl0785.46057
  14. [14] R. Rałowski, On deformations of commutation relation algebras, Preprint IFT UWr 890, (1995), q-alg/9506004. 
  15. [15] W. Marcinek, On the deformation of commutation relations, in Proceedings of the XIII Workshop in Geometric Methods in Physics, July 1-7, 1994 Białowieża, Poland, ed. by J-P. Antoine et al, Plenum Press 1995. 
  16. [16] J. C. Baez, Lett. Math. Phys. 23, 1333, (1991). 
  17. [17] W. Marcinek and R. Rałowski, Particle operators from braided geometry, in 'Quantum Groups, Formalism and Applications' XXX Karpacz Winter School in Theoretical Physics, 1994, Eds. J. Lukierski et al., 149-154 (1995). 
  18. [18] W. Marcinek and Robert Rałowski, On Wick Algebras with Braid Relations, Preprint IFT UWr 876/9, (1994) and J. Math. Phys. 36, 2803, (1995). Zbl0883.46047
  19. [19] W. Marcinek, On Commutation Relations for Quons, q-alg/9512015. 
  20. [20] M. Bożejko, R. Speicher, Math. Ann. 300, 97, (1994). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.