The search session has expired. Please query the service again.
We study a two-particle quantum system given by a test particle interacting in three dimensions with a harmonic oscillator through a zero-range potential. We give a rigorous meaning to the Schrödinger operator associated with the system by applying the theory of quadratic forms and defining suitable families of self-adjoint operators. Finally we fully characterize the spectral properties of such operators.
The model of generalized quons is described in an algebraic way as certain quasiparticle states with statistics determined by a commutation factor on an abelian group. Quantization is described in terms of quantum Weyl algebras. The corresponding commutation relations and scalar product are also given.
We present a sparse grid/hyperbolic cross discretization for many-particle problems.
It involves the tensor product of a one-particle multilevel basis. Subsequent truncation of the associated series expansion then results in a sparse grid discretization.
Here, depending on the norms involved, different variants of sparse grid techniques for many-particle spaces can be derived
that, in the best case, result in complexities and error estimates which are independent of the number of particles.
Furthermore...
Currently displaying 1 –
6 of
6