# Non-Riemannian gravitational interactions

Banach Center Publications (1997)

- Volume: 41, Issue: 2, page 263-271
- ISSN: 0137-6934

## Access Full Article

top## Abstract

top## How to cite

topTucker, Robin, and Wang, Charles. "Non-Riemannian gravitational interactions." Banach Center Publications 41.2 (1997): 263-271. <http://eudml.org/doc/252244>.

@article{Tucker1997,

abstract = {Recent developments in theories of non-Riemannian gravitational interactions are outlined. The question of the motion of a fluid in the presence of torsion and metric gradient fields is approached in terms of the divergence of the Einstein tensor associated with a general connection. In the absence of matter the variational equations associated with a broad class of actions involving non-Riemannian fields give rise to an Einstein-Proca system associated with the standard Levi-Civita connection.},

author = {Tucker, Robin, Wang, Charles},

journal = {Banach Center Publications},

keywords = {motion of a fluid; torsion; divergence of the Einstein tensor; variational equations; Einstein-Proca system; Levi-Civita connection},

language = {eng},

number = {2},

pages = {263-271},

title = {Non-Riemannian gravitational interactions},

url = {http://eudml.org/doc/252244},

volume = {41},

year = {1997},

}

TY - JOUR

AU - Tucker, Robin

AU - Wang, Charles

TI - Non-Riemannian gravitational interactions

JO - Banach Center Publications

PY - 1997

VL - 41

IS - 2

SP - 263

EP - 271

AB - Recent developments in theories of non-Riemannian gravitational interactions are outlined. The question of the motion of a fluid in the presence of torsion and metric gradient fields is approached in terms of the divergence of the Einstein tensor associated with a general connection. In the absence of matter the variational equations associated with a broad class of actions involving non-Riemannian fields give rise to an Einstein-Proca system associated with the standard Levi-Civita connection.

LA - eng

KW - motion of a fluid; torsion; divergence of the Einstein tensor; variational equations; Einstein-Proca system; Levi-Civita connection

UR - http://eudml.org/doc/252244

ER -

## References

top- [1] H. Weyl, Geometrie und Physik, Naturwissenschaften 19 (1931) 49.
- [2] J. Scherk, J. H. Schwarz, Phys. Letts 52B (1974) 347.
- [3] T. Dereli, R. W. Tucker, Lett. Class. Q. Grav. 12 (1995) L31.
- [4] T. Dereli, M. Önder, R. W. Tucker, Lett. Class. Q. Grav. 12 (1995) L25.
- [5] T. Dereli, R. W. Tucker, Class. Q. Grav. 11 (1994) 2575.
- [6] R. W. Tucker, C. Wang, Class. Quan. Grav. 12 (1995) 2587.
- [7] F. W. Hehl, J. D. McCrea, E. W. Mielke, Y. Ne'eman, Physics Reports, 258 (1995) 1.
- [8] F. W. Hehl, E. Lord, L. L. Smalley, Gen. Rel. Grav. 13 (1981) 1037.
- [9] P. Baekler, F. W. Hehl, E. W. Mielke, ``Non-Metricity and Torsion'' in Proc. of 4th Marcel Grossman Meeting on General Relativity, Part A, Ed. R Ruffini (North Holland 1986) 277.
- [10] V. N. Ponomariev, Y. Obukhov, Gen. Rel. Grav. 14 (1982) 309.
- [11] J. D. McCrea, Clas. Q. Grav. 9 (1992) 553.
- [12] R. Tresguerres, Z. für Physik C 65 (1995) 347.
- [13] R. Tresguerres, Phys.Lett. A200 (1995) 405.
- [14] Y. Obukhov, E. J. Vlachynsky, W. Esser, R. Tresguerres, F. W. Hehl, An exact solution of the metric-affine gauge theory with dilation, shear and spin charges, gr-qc 9604027 (1996). Zbl0972.83584
- [15] E. J. Vlachynsky, R. Tresguerres, Y. Obukhov, F. W. Hehl, An axially symmetric solution of metric-affine gravity, gr-qc 9604035 (1996). Zbl0875.83063
- [16] P. Teyssandier, R. W. Tucker, Class. Quantum Grav 13 (1996) 145.
- [17] T. Dereli, M. Önder, J. Schray, R. W. Tucker, C. Wang, Non-Riemannian Gravity and the Einstein-Proca System, gr-qc 9604039 (1996). Zbl0865.53084
- [18] Y. Obhukov, R. Tresguerres, Phys. Lett. A184 (1993) 17.
- [19] Y. Ne'eman, F. W. Hehl, Test Matter in a Spacetime with Nonmetricity, gr-qc 9604047 (1996).
- [20] H. Kleinert, A. Pelster, Lagrangian Mechanics in Spaces with Curvature and Torsion, gr-qc 9605028 (1996).

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.