Non-Riemannian gravitational interactions

Robin Tucker; Charles Wang

Banach Center Publications (1997)

  • Volume: 41, Issue: 2, page 263-271
  • ISSN: 0137-6934

Abstract

top
Recent developments in theories of non-Riemannian gravitational interactions are outlined. The question of the motion of a fluid in the presence of torsion and metric gradient fields is approached in terms of the divergence of the Einstein tensor associated with a general connection. In the absence of matter the variational equations associated with a broad class of actions involving non-Riemannian fields give rise to an Einstein-Proca system associated with the standard Levi-Civita connection.

How to cite

top

Tucker, Robin, and Wang, Charles. "Non-Riemannian gravitational interactions." Banach Center Publications 41.2 (1997): 263-271. <http://eudml.org/doc/252244>.

@article{Tucker1997,
abstract = {Recent developments in theories of non-Riemannian gravitational interactions are outlined. The question of the motion of a fluid in the presence of torsion and metric gradient fields is approached in terms of the divergence of the Einstein tensor associated with a general connection. In the absence of matter the variational equations associated with a broad class of actions involving non-Riemannian fields give rise to an Einstein-Proca system associated with the standard Levi-Civita connection.},
author = {Tucker, Robin, Wang, Charles},
journal = {Banach Center Publications},
keywords = {motion of a fluid; torsion; divergence of the Einstein tensor; variational equations; Einstein-Proca system; Levi-Civita connection},
language = {eng},
number = {2},
pages = {263-271},
title = {Non-Riemannian gravitational interactions},
url = {http://eudml.org/doc/252244},
volume = {41},
year = {1997},
}

TY - JOUR
AU - Tucker, Robin
AU - Wang, Charles
TI - Non-Riemannian gravitational interactions
JO - Banach Center Publications
PY - 1997
VL - 41
IS - 2
SP - 263
EP - 271
AB - Recent developments in theories of non-Riemannian gravitational interactions are outlined. The question of the motion of a fluid in the presence of torsion and metric gradient fields is approached in terms of the divergence of the Einstein tensor associated with a general connection. In the absence of matter the variational equations associated with a broad class of actions involving non-Riemannian fields give rise to an Einstein-Proca system associated with the standard Levi-Civita connection.
LA - eng
KW - motion of a fluid; torsion; divergence of the Einstein tensor; variational equations; Einstein-Proca system; Levi-Civita connection
UR - http://eudml.org/doc/252244
ER -

References

top
  1. [1] H. Weyl, Geometrie und Physik, Naturwissenschaften 19 (1931) 49. 
  2. [2] J. Scherk, J. H. Schwarz, Phys. Letts 52B (1974) 347. 
  3. [3] T. Dereli, R. W. Tucker, Lett. Class. Q. Grav. 12 (1995) L31. 
  4. [4] T. Dereli, M. Önder, R. W. Tucker, Lett. Class. Q. Grav. 12 (1995) L25. 
  5. [5] T. Dereli, R. W. Tucker, Class. Q. Grav. 11 (1994) 2575. 
  6. [6] R. W. Tucker, C. Wang, Class. Quan. Grav. 12 (1995) 2587. 
  7. [7] F. W. Hehl, J. D. McCrea, E. W. Mielke, Y. Ne'eman, Physics Reports, 258 (1995) 1. 
  8. [8] F. W. Hehl, E. Lord, L. L. Smalley, Gen. Rel. Grav. 13 (1981) 1037. 
  9. [9] P. Baekler, F. W. Hehl, E. W. Mielke, ``Non-Metricity and Torsion'' in Proc. of 4th Marcel Grossman Meeting on General Relativity, Part A, Ed. R Ruffini (North Holland 1986) 277. 
  10. [10] V. N. Ponomariev, Y. Obukhov, Gen. Rel. Grav. 14 (1982) 309. 
  11. [11] J. D. McCrea, Clas. Q. Grav. 9 (1992) 553. 
  12. [12] R. Tresguerres, Z. für Physik C 65 (1995) 347. 
  13. [13] R. Tresguerres, Phys.Lett. A200 (1995) 405. 
  14. [14] Y. Obukhov, E. J. Vlachynsky, W. Esser, R. Tresguerres, F. W. Hehl, An exact solution of the metric-affine gauge theory with dilation, shear and spin charges, gr-qc 9604027 (1996). Zbl0972.83584
  15. [15] E. J. Vlachynsky, R. Tresguerres, Y. Obukhov, F. W. Hehl, An axially symmetric solution of metric-affine gravity, gr-qc 9604035 (1996). Zbl0875.83063
  16. [16] P. Teyssandier, R. W. Tucker, Class. Quantum Grav 13 (1996) 145. 
  17. [17] T. Dereli, M. Önder, J. Schray, R. W. Tucker, C. Wang, Non-Riemannian Gravity and the Einstein-Proca System, gr-qc 9604039 (1996). Zbl0865.53084
  18. [18] Y. Obhukov, R. Tresguerres, Phys. Lett. A184 (1993) 17. 
  19. [19] Y. Ne'eman, F. W. Hehl, Test Matter in a Spacetime with Nonmetricity, gr-qc 9604047 (1996). 
  20. [20] H. Kleinert, A. Pelster, Lagrangian Mechanics in Spaces with Curvature and Torsion, gr-qc 9605028 (1996). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.