A convergent post-newtonian approximation for the constraint equations in general relativity
In this paper we study the -stability of closed hypersurfaces with constant -th mean curvature in Riemannian manifolds of constant sectional curvature. In this setting, we obtain a characterization of the -stable ones through of the analysis of the first eigenvalue of an operator naturally attached to the -th mean curvature.
We discuss spacecraft Doppler tracking for detecting gravitational waves in which Doppler data recorded on the ground are linearly combined with Doppler measurements made on board a spacecraft. By using the four-link radio system first proposed by Vessot and Levine [1] we derive a new method for removing from the combined data the frequency fluctuations due to the Earth troposphere, ionosphere, and mechanical vibrations of the antenna on the ground. This method also reduces the frequency fluctuations...
The central «pseudopotentials» yielding, in relativistic mechanics, closed (bounded) orbits for any given energy are derived by inspection (of the algebraic form of the hamiltonian).
There is an obvious topological obstruction for a finite energy unimodular harmonic extension of a -valued function defined on the boundary of a bounded regular domain of . When such extensions do not exist, we use the Ginzburg-Landau relaxation procedure. We prove that, up to a subsequence, a sequence of Ginzburg-Landau minimizers, as the coupling parameter tends to infinity, converges to a unimodular harmonic map away from a codimension-2 minimal current minimizing the area within the homology...
I vari metodi di definire connessioni adattate ad un Riferimento fisico vengono qui ricondotti ad un unico formalismo. Viene inoltre introdotta la nozione generale di campo gravitazionale affine adattato (sia al Riferimento che alla connessione).
A mini-introduction to critical phenomena in gravitational collapse is combined with a more detailed discussion of how gravity regularizes the 'critical spacetimes' that dominate these phenomena.