Classification of the simple modules of the quantum Weyl algebra and the quantum plane

Vladimir Bavula

Banach Center Publications (1997)

  • Volume: 40, Issue: 1, page 193-201
  • ISSN: 0137-6934

How to cite

top

Bavula, Vladimir. "Classification of the simple modules of the quantum Weyl algebra and the quantum plane." Banach Center Publications 40.1 (1997): 193-201. <http://eudml.org/doc/252250>.

@article{Bavula1997,
author = {Bavula, Vladimir},
journal = {Banach Center Publications},
keywords = {generalized crossed product; simple module; weight module; quantum Weyl algebra; quantum plane; Virasoro algebra},
language = {eng},
number = {1},
pages = {193-201},
title = {Classification of the simple modules of the quantum Weyl algebra and the quantum plane},
url = {http://eudml.org/doc/252250},
volume = {40},
year = {1997},
}

TY - JOUR
AU - Bavula, Vladimir
TI - Classification of the simple modules of the quantum Weyl algebra and the quantum plane
JO - Banach Center Publications
PY - 1997
VL - 40
IS - 1
SP - 193
EP - 201
LA - eng
KW - generalized crossed product; simple module; weight module; quantum Weyl algebra; quantum plane; Virasoro algebra
UR - http://eudml.org/doc/252250
ER -

References

top
  1. [AP 1] D. Arnal and G. Pinczon, On algebraically irreducible representations of the Lie algebra sl(2), J. Math. Phys. 15 (1974), 350-359. Zbl0298.17003
  2. [AP 2] D. Arnal and G. Pinczon, Idéaux à gauche dans les quotients simples de l'algèbre enveloppante de sl(2), Bull. Soc. Math. France 101 (1973), 381-395. Zbl0357.17008
  3. [Bam] K. S. Bamba, Sur les idéaux maximaux de l’algèbre de Weyl A 1 , C. R. Acad. Sci. Paris (A) 283 (1976), 71-74. 
  4. [BVO] V. V. Bavula, and F. van Oystaeyen, The simple modules of certain generalized crossed products, Trans. Amer. Math. Soc. (to appear). Zbl0927.16002
  5. [Bav 1] V. V. Bavula, The finite-dimensionality of Ext n ’s and Tor n ’s of simple modules over a class of algebras, Funktsional. Anal. i Prilozhen. 25 (1991),no. 3, 80-82. 
  6. [Bav 2] V. V. Bavula, The simple D[X,Y;σ,a]-modules, Ukrainian Math. J. 44 (1992), 1628-1644. Zbl0810.16003
  7. [Bav 3] V. V. Bavula, Generalized Weyl algebras, kernel and tensor-simple algebras, their simple modules, Representations of algebras. Sixth International Conference, August 19-22, 1992. CMS Conference proceedings (V. Dlab and H. Lenzing Eds.), v. 14 (1993), 83-106. Zbl0806.17023
  8. [Bav 4] V. V. Bavula, Generalized Weyl algebras and their representations, Algebra i Analiz, 4 (1992), no. 1, 75-97; English trans. in St.Petersburg Math. J. 4 (1993), no. 1, 71-92. 
  9. [Bav 5] V. V. Bavula, Tensor homological minimal algebras, global dimension of the tensor product of algebras and of generalized Weyl algebras, Bull. Sci. Math. 120 (1996), 293-335. Zbl0855.16010
  10. [Bav 6] V. V. Bavula, Global dimension of generalized Weyl algebras. Proceedings of the 7th Int. Conf. on Represent. of Algebras, August 22-26, 1994. CMS Conference proceedings (R. Bautista, R. Martinez-Villa and J. A. de la Pena Eds), 18 (1996), 81-107. Zbl0857.16025
  11. [Bl 1] R. E. Block, Classification of the irréducible representations of sl(2, C), Bull. Amer. Math. Soc., 1 (1979), 247-250. sl(2) and of the Weyl algebra, Adv. Math. 39 (1981), 69-110. 
  12. [Bl 2] R. E. Block, The irreducible representations of the Weyl algebra A 1 , in ’Séminaire d’Algèbre Paul Dubreil (Proceedings, Paris 1977-1978)’ (M. P. Malliavin, Ed.), Lecture Notes in Mathematics no. 740, pp. 69-79, Springer-Verlag, Berlin/New York, 1979. 
  13. [Bl 3] R. E. Block, The irreducible representations of the Lie algebra sl(2) and of the Weyl algebra, Adv. Math. 39 (1981), 69-110. Zbl0454.17005
  14. [Di 1] J. Dixmier, Représentations irréductibles des algèbres de Lie nilpotentes, An. Acad. Brasil. Ci. 35 (1963), 491-519. 
  15. [Di 2] J. Dixmier, Sur les algèbres de Weyl, Bull. Soc. Math. France 96 (1968), 209-242. 
  16. [EL] A. Van den Essen and A. Levelt, An explicit description of all simple K[[X]][∂]-modules, Contemp. Math., 130 (1992), 121-131. Zbl0812.16037
  17. [Jac] N. Jacobson, The Theory of Rings, Amer. Math. Soc., Providence, R. I., 1943. 
  18. [Jor 1] D. A. Jordan, Krull and global dimension of certain iterated skew polynomial rings, Contemp. Math., 130 (1992), 201-213. Zbl0779.16011
  19. [Jor 2] D. A. Jordan, Primitivity in skew Laurent polynomial rings and related rings, Math. Z., 213 (1993), 353-371. Zbl0797.16037
  20. [Hod 1] T. J. Hodges, Noncommutative deformation of type-A Kleinian singularities, J. Algebra 161 (1993), no. 2, 271-290. Zbl0807.16029
  21. [Le] F. W. Lemire, Existence of weight space decompositions for irreducible representations of simple Lie algebras, Canad. Math. Bull. 14 (1971), 113-115. Zbl0215.09502
  22. [Ma] M.-P. Malliavin, L'algèbre d'Heisenberg quantique, C. R. Acad. Sci. Paris, Sér. 1, 317 (1993), 1099-1102. 
  23. [MR] J. C. McConnell and J. C. Robson, Homomorphism and extensions of modules over certain polynomial rings, J. Algebra 26 (1973), 319-342. Zbl0266.16031
  24. [Sm] S. P. Smith, A class of algebras similar to the enveloping algebra of sl(2), Trans. Amer. Math. Soc. 322 (1990), 285-314. 
  25. [Sm 1] S. P. Smith, Quantum qroups: An introduction and survey for ring theoretists, in Noncommutative Rings (S.Montgomery and L.W.Small, Eds.) pp. 131-178, MSRI publ. 24, Springer-Verlag, Berlin (1992). 
  26. [Za] C. Zachos, Elementary paradigms of quantum algebras, Contemporary Math. 134 (1992), 351-377. Zbl0784.17028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.