Displaying similar documents to “Classification of the simple modules of the quantum Weyl algebra and the quantum plane”

Braided modules and reflection equations

Dimitri Gurevich (1997)

Banach Center Publications

Similarity:

We introduce a representation theory of q-Lie algebras defined earlier in [DG1], [DG2], formulated in terms of braided modules. We also discuss other ways to define Lie algebra-like objects related to quantum groups, in particular, those based on the so-called reflection equations. We also investigate the truncated tensor product of braided modules.

On P-extending modules.

Kamal, M.A., Elmnophy, O.A. (2005)

Acta Mathematica Universitatis Comenianae. New Series

Similarity:

On bounded generalized Harish-Chandra modules

Ivan Penkov, Vera Serganova (2012)

Annales de l’institut Fourier

Similarity:

Let 𝔤 be a complex reductive Lie algebra and 𝔨 𝔤 be any reductive in 𝔤 subalgebra. We call a ( 𝔤 , 𝔨 ) -module M bounded if the 𝔨 -multiplicities of M are uniformly bounded. In this paper we initiate a general study of simple bounded ( 𝔤 , 𝔨 ) -modules. We prove a strong necessary condition for a subalgebra 𝔨 to be bounded (Corollary 4.6), to admit an infinite-dimensional simple bounded ( 𝔤 , 𝔨 ) -module, and then establish a sufficient condition for a subalgebra 𝔨 to be bounded (Theorem 5.1). As a result we are...