Bicovariant differential calculi and cross products on braided Hopf algebras

Yuri Bespalov; Bernhard Drabant

Banach Center Publications (1997)

  • Volume: 40, Issue: 1, page 79-90
  • ISSN: 0137-6934

Abstract

top
In a braided monoidal category C we consider Hopf bimodules and crossed modules over a braided Hopf algebra H. We show that both categories are equivalent. It is discussed that the category of Hopf bimodule bialgebras coincides up to isomorphism with the category of bialgebra projections over H. Using these results we generalize the Radford-Majid criterion and show that bialgebra cross products over the Hopf algebra H are precisely described by H-crossed module bialgebras. In specific braided monoidal abelian categories we define (bicovariant) braided differential calculi over H and apply the results on Hopf bimodules to construct a higher order bicovariant differential calculus over H out of any first order bicovariant differential calculus over H. This object is shown to be a bialgebra with universal properties.

How to cite

top

Bespalov, Yuri, and Drabant, Bernhard. "Bicovariant differential calculi and cross products on braided Hopf algebras." Banach Center Publications 40.1 (1997): 79-90. <http://eudml.org/doc/252253>.

@article{Bespalov1997,
abstract = {In a braided monoidal category C we consider Hopf bimodules and crossed modules over a braided Hopf algebra H. We show that both categories are equivalent. It is discussed that the category of Hopf bimodule bialgebras coincides up to isomorphism with the category of bialgebra projections over H. Using these results we generalize the Radford-Majid criterion and show that bialgebra cross products over the Hopf algebra H are precisely described by H-crossed module bialgebras. In specific braided monoidal abelian categories we define (bicovariant) braided differential calculi over H and apply the results on Hopf bimodules to construct a higher order bicovariant differential calculus over H out of any first order bicovariant differential calculus over H. This object is shown to be a bialgebra with universal properties.},
author = {Bespalov, Yuri, Drabant, Bernhard},
journal = {Banach Center Publications},
keywords = {braided monoidal categories; Hopf bimodules; braided Hopf algebras; categories of Hopf bimodule bialgebras; bialgebra cross products; braided monoidal Abelian categories; braided differential calculi},
language = {eng},
number = {1},
pages = {79-90},
title = {Bicovariant differential calculi and cross products on braided Hopf algebras},
url = {http://eudml.org/doc/252253},
volume = {40},
year = {1997},
}

TY - JOUR
AU - Bespalov, Yuri
AU - Drabant, Bernhard
TI - Bicovariant differential calculi and cross products on braided Hopf algebras
JO - Banach Center Publications
PY - 1997
VL - 40
IS - 1
SP - 79
EP - 90
AB - In a braided monoidal category C we consider Hopf bimodules and crossed modules over a braided Hopf algebra H. We show that both categories are equivalent. It is discussed that the category of Hopf bimodule bialgebras coincides up to isomorphism with the category of bialgebra projections over H. Using these results we generalize the Radford-Majid criterion and show that bialgebra cross products over the Hopf algebra H are precisely described by H-crossed module bialgebras. In specific braided monoidal abelian categories we define (bicovariant) braided differential calculi over H and apply the results on Hopf bimodules to construct a higher order bicovariant differential calculus over H out of any first order bicovariant differential calculus over H. This object is shown to be a bialgebra with universal properties.
LA - eng
KW - braided monoidal categories; Hopf bimodules; braided Hopf algebras; categories of Hopf bimodule bialgebras; bialgebra cross products; braided monoidal Abelian categories; braided differential calculi
UR - http://eudml.org/doc/252253
ER -

References

top
  1. [1] Yu. Bespalov, Crossed Modules and Quantum Groups in Braided Categories, to appear in Appl. Categorical Structures. 
  2. [2] Yu. Bespalov and B. Drabant, Hopf (Bi-)Modules and Crossed Modules in Braided Monoidal Categories, preprint UVA-FWI 95-18 (1995). 
  3. [3] Yu. Bespalov and B. Drabant, Differential Calculus in Braided Abelian Categories, in preparation. 
  4. [4] T. Brzezinski, Remarks on Bicovariant Differential Calculi and Exterior Hopf Algebras, Lett. Math. Phys. 27, 287 (1993). Zbl0782.17009
  5. [5] B. Drabant, Braided Bosonization and Inhomogeneous Quantum Groups, Preprint UVA-FWI 94-28 (1994), to appear in Acta Math. Appl. Zbl0882.16023
  6. [6] P. Freyd and D. Yetter, Braided compact closed categories with applications to low dimensional topology, Adv. Math. 77, 156 (1989). Zbl0679.57003
  7. [7] D. Husemoller, Cyclic Homology, Tata Institute Lecture Notes on Mathematics 83, Springer (1991). 
  8. [8] A.P. Isaev and A.A. Vladimirov, G L q ( n ) -Covariant Braided Differential Bialgebras, Lett. Math. Phys. 33, 297 (1995). 
  9. [9] A. Joyal and R. Street, Braided monoidal categories, Mathematics Reports 86008, Macquarie University (1986). Zbl0817.18007
  10. [10] S. Majid, Algebras and Hopf algebras in braided categories, Advances in Hopf Algebras, Lecture Notes in Pure and Appl. Math. 158, 55, Dekker (1994). Zbl0812.18004
  11. [11] S. Majid, Cross Products by Braided Groups and Bosonization, J. Algebra 163, 165 (1994). Zbl0807.16036
  12. [12] S. Majid, Transmutation theory and rank for quantum braided groups, Math. Proc. Camb. Phil. Soc. 113, 45 (1993). Zbl0781.17006
  13. [13] S. Majid, Free Braided Differential Operators, Braided Binomial Theorem, and the Braided Exponential Map, J. Math. Phys. 34, 4843 (1993). Zbl0807.16035
  14. [14] S. Mac Lane, Categories. For the Working Mathematician, GTM 5, Springer (1972). 
  15. [15] S. Mac Lane, Natural associativity and commutativity, Rice University Studies 49, 28 (1963). 
  16. [16] Yu. I. Manin, Notes on Quantum Groups and Quantum de Rham Complexes, J. Theor. and Math. Phys. 92, 425 (1992). G. Maltsiniotis, Le langage des espaces et des groupes quantiques, Commun. Math. Phys. 151, 275 (1993). 
  17. [17] D.E. Radford, The Structure of Hopf Algebras with a Projection, J. Algebra 92, 322 (1985). Zbl0549.16003
  18. [18] D.E. Radford and J. Towber, Yetter-Drinfel'd categories associated to an arbitrary bialgebra, J. Pure Appl. Algebra 87, 259 (1993). Zbl0796.16033
  19. [19] M.E. Sweedler, Hopf algebras, W.A. Benjamin, New York (1969). 
  20. [20] S.L. Woronowicz, Differential Calculus on Compact Matrix Pseudogroups (Quantum Groups), Commun. Math. Phys. 122, 125 (1989). Zbl0751.58042
  21. [21] D. Yetter, Quantum groups and representations of monoidal categories, Math. Proc. Camb. Phil. Soc. 108, 261 (1990). Zbl0712.17014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.