On the braiding on a Hopf algebra in a braided category.
Schauenburg, Peter (1998)
The New York Journal of Mathematics [electronic only]
Similarity:
Schauenburg, Peter (1998)
The New York Journal of Mathematics [electronic only]
Similarity:
José N. Alonso Alvarez, José Manuel Fernández Vilaboa, Ramón González Rodríguez (2001)
Publicacions Matemàtiques
Similarity:
Let τ be an invertible skew pairing on (B,H) where B and H are Hopf algebras in a symmetric monoidal category C with (co)equalizers. Assume that H is quasitriangular. Then we obtain a new algebra structure such that B is a Hopf algebra in the braided category γD and there exists a Hopf algebra isomorphism w: B ∞ H → B [×] H in C, where B ∞ H is a Hopf algebra with (co)algebra structure the smash (co)product and B [×] H is the Hopf algebra defined by Doi and Takeuchi. ...
Majid, Shahn
Similarity:
[For the entire collection see Zbl 0742.00067.]The Tanaka-Krein type equivalence between Hopf algebras and functored monoidal categories provides the heuristic strategy of this paper. The author introduces the notion of a double cross product of monoidal categories as a generalization of double cross product of Hopf algebras, and explains some of the motivation from physics (the representation theory for double quantum groups).The Hopf algebra constructions are formulated in terms of...
Volodymyr Lyubashenko (1997)
Banach Center Publications
Similarity:
Given an abelian 𝑉-linear rigid monoidal category 𝑉, where 𝑉 is a perfect field, we define squared coalgebras as objects of cocompleted 𝑉 ⨂ 𝑉 (Deligne's tensor product of categories) equipped with the appropriate notion of comultiplication. Based on this, (squared) bialgebras and Hopf algebras are defined without use of braiding. If 𝑉 is the category of 𝑉-vector spaces, squared (co)algebras coincide with conventional ones. If 𝑉 is braided, a braided Hopf algebra can be obtained...
Muriel Livernet (2010)
Annales mathématiques Blaise Pascal
Similarity:
The purpose of this paper is two fold: we study the behaviour of the forgetful functor from -modules to graded vector spaces in the context of algebras over an operad and derive the construction of combinatorial Hopf algebras. As a byproduct we obtain freeness and cofreeness results for those Hopf algebras. Let denote the forgetful functor from -modules to graded vector spaces. Left modules over an operad are treated as -algebras in the category of -modules. We generalize...
Shuangjian Guo, Xiaohui Zhang, Shengxiang Wang (2016)
Colloquium Mathematicae
Similarity:
We continue our study of the category of Doi Hom-Hopf modules introduced in [Colloq. Math., to appear]. We find a sufficient condition for the category of Doi Hom-Hopf modules to be monoidal. We also obtain a condition for a monoidal Hom-algebra and monoidal Hom-coalgebra to be monoidal Hom-bialgebras. Moreover, we introduce morphisms between the underlying monoidal Hom-Hopf algebras, Hom-comodule algebras and Hom-module coalgebras, which give rise to functors between the category of...
Mićo Đurđević, Zbigniew Oziewicz (1996)
Banach Center Publications
Similarity:
Let V be a ℂ-space, be a pre-braid operator and let This paper offers a sufficient condition on (σ,F) that there exists a Clifford algebra Cl(V,σ,F) as the Chevalley F-dependent deformation of an exterior algebra . If and F is non-degenerate then F is not a σ-morphism in σ-braided monoidal category. A spinor representation as a left Cl(V,σ,F)-module is identified with an exterior algebra over F-isotropic ℂ-subspace of V. We give a sufficient condition on braid σ that the spinor...
Zhang, Shouchuan, Gould, Mark D., Zhang, Yao-Zhong (2008)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity: