Trigonometric sums over primes III

Glyn Harman

Journal de théorie des nombres de Bordeaux (2003)

  • Volume: 15, Issue: 3, page 727-740
  • ISSN: 1246-7405

Abstract

top
New bounds are given for the exponential sum P p < 2 P e ( α p k ) were k 5 , p denotes a prime and e ( x ) = exp ( 2 π i x ) .

How to cite

top

Harman, Glyn. "Trigonometric sums over primes III." Journal de théorie des nombres de Bordeaux 15.3 (2003): 727-740. <http://eudml.org/doc/252261>.

@article{Harman2003,
abstract = {New bounds are given for the exponential sum\begin\{equation*\} \sum \_\{P \le p &lt; 2P\}^\{\} e(\alpha p^k) \end\{equation*\}were $k \ge 5, p$ denotes a prime and $e(x) = \exp (2\pi ix)$.},
author = {Harman, Glyn},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {3},
pages = {727-740},
publisher = {Université Bordeaux I},
title = {Trigonometric sums over primes III},
url = {http://eudml.org/doc/252261},
volume = {15},
year = {2003},
}

TY - JOUR
AU - Harman, Glyn
TI - Trigonometric sums over primes III
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 3
SP - 727
EP - 740
AB - New bounds are given for the exponential sum\begin{equation*} \sum _{P \le p &lt; 2P}^{} e(\alpha p^k) \end{equation*}were $k \ge 5, p$ denotes a prime and $e(x) = \exp (2\pi ix)$.
LA - eng
UR - http://eudml.org/doc/252261
ER -

References

top
  1. [1] R.C. Baker, G. Harman, On the distribution of αpk modulo one. Mathematika38 (1991), 170-184. Zbl0751.11037
  2. [2] E. Fouvry, P. Michel, Sur certaines sommes d'exponentielles sur les nombres premiers. Ann. Sci. Ec. Norm. Sup. IV Ser.31 (1998), 93-130. Zbl0915.11045MR1604298
  3. [3] A. Ghosh, The distribution of αp2 modulo one. Proc. London Math. Soc. (3) 42 (1981), 252-269. Zbl0447.10035
  4. [4] G. Harman, Trigonometric sums over primes I. Mathematika28 (1981), 249-254. Zbl0465.10029MR645105
  5. [5] G. Harman, Trigonometric sums over primes II. Glasgow Math. J.24 (1983), 23-37. Zbl0504.10017MR685480
  6. [6] D.R. Heath-Brown, Prime numbers in short intervals and a generalized Vaughan identity. Can. J. Math.34 (1982), 1365-1377. Zbl0478.10024MR678676
  7. [7] K. Kawada, T.D. Wooley, On the Waring-Goldbach problem for fourth and fifth powers. Proc. London Math. Soc. (3) 83 (2001), 1-50. Zbl1016.11046MR1829558
  8. [8] R.C. Vaughan, Mean value theorems in prime number theory. J. London Math. Soc. (2) 10 (1975), 153-162. Zbl0314.10028MR376567
  9. [9] R.C. Vaughan, The Hardy-Littlewood Method second edition. Cambridge University Press, 1997. Zbl0868.11046MR1435742
  10. [10] I.M. Vinogradov, Some theorems concerning the theory of primes. Rec. Math. Moscow N.S. 2 (1937), 179-194. Zbl0017.19803JFM63.0131.05
  11. [11] I.M. Vinogradov, A new estimation of a trigonometric sum containing primes. Bull. Acad. Sci. URSS Ser. Math.2 (1938), 1-13. Zbl0018.39002JFM64.0983.01
  12. [12] K.C. Wong, On the distribution of αpk modulo one. Glasgow Math. J.39 (1997), 121-130. Zbl0880.11052
  13. [13] T.D. Wooley, New estimates for Weyl sums. Quart. J. Math. Oxford (2) 46 (1995), 119-127. Zbl0855.11043MR1326136

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.