Page 1 Next

Displaying 1 – 20 of 27

Showing per page

A diophantine equation involving special prime numbers

Stoyan Dimitrov (2023)

Czechoslovak Mathematical Journal

Let [ · ] be the floor function. In this paper, we prove by asymptotic formula that when 1 < c < 3441 2539 , then every sufficiently large positive integer N can be represented in the form N = [ p 1 c ] + [ p 2 c ] + [ p 3 c ] + [ p 4 c ] + [ p 5 c ] , where p 1 , p 2 , p 3 , p 4 , p 5 are primes such that p 1 = x 2 + y 2 + 1 .

À la recherche de petites sommes d'exponentielles

Étienne Fouvry, Philippe Michel (2002)

Annales de l’institut Fourier

Soit f ( x ) une fraction rationnelle à coefficients entiers, vérifiant des hypothèses assez générales. On prouve l’existence d’une infinité d’entiers n , ayant exactement deux facteurs premiers, tels que la somme d’exponentielles x = 1 n exp ( 2 π i f ( x ) / n ) soit en O ( n 1 2 - β f ) , où β f &gt; 0 est une constante ne dépendant que de la géométrie de f . On donne aussi des résultats de répartition du type Sato-Tate, pour certaines sommes de Salié, modulo n , avec n entier comme ci- dessus.

A note on arithmetic Diophantine series

Alexander E. Patkowski (2021)

Czechoslovak Mathematical Journal

We consider an asymptotic analysis for series related to the work of Hardy and Littlewood (1923) on Diophantine approximation, as well as Davenport. In particular, we expand on ideas from some previous work on arithmetic series and the RH. To accomplish this, Mellin inversion is applied to certain infinite series over arithmetic functions to apply Cauchy's residue theorem, and then the remainder of terms is estimated according to the assumption of the RH. In the last section, we use simple properties...

Gaps between primes in Beatty sequences

Roger C. Baker, Liangyi Zhao (2016)

Acta Arithmetica

We study the gaps between primes in Beatty sequences following the methods in the recent breakthrough by Maynard (2015).

On Linnik's theorem on Goldbach numbers in short intervals and related problems

Alessandro Languasco, Alberto Perelli (1994)

Annales de l'institut Fourier

Linnik proved, assuming the Riemann Hypothesis, that for any ϵ &gt; 0 , the interval [ N , N + log 3 + ϵ N ] contains a number which is the sum of two primes, provided that N is sufficiently large. This has subsequently been improved to the same assertion being valid for the smaller gap C log 2 N , the added new ingredient being Selberg’s estimate for the mean-square of primes in short intervals. Here we give another proof of this sharper result which avoids the use of Selberg’s estimate and is therefore more in the spirit of Linnik’s...

Currently displaying 1 – 20 of 27

Page 1 Next