L - L 2 weighted estimate for the wave equation with potential

Vladimir Georgiev; Nicola Visciglia

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2003)

  • Volume: 14, Issue: 2, page 109-135
  • ISSN: 1120-6330

Abstract

top
We consider a potential type perturbation of the three dimensional wave equation and we establish a dispersive estimate for the associated propagator. The main estimate is proved under the assumption that the potential V 0 satisfies V x C 1 + x 2 + ϵ 0 , where ϵ 0 > 0 .

How to cite

top

Georgiev, Vladimir, and Visciglia, Nicola. "$L^{\infty}- L^{2}$ weighted estimate for the wave equation with potential." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 14.2 (2003): 109-135. <http://eudml.org/doc/252280>.

@article{Georgiev2003,
abstract = {We consider a potential type perturbation of the three dimensional wave equation and we establish a dispersive estimate for the associated propagator. The main estimate is proved under the assumption that the potential $V \ge 0$ satisfies $$|V(x)| \le \frac\{C\}\{(1+ |x|)^\{2+\epsilon\_\{0\}\}\},$$ where $\epsilon_\{0\} > 0$.},
author = {Georgiev, Vladimir, Visciglia, Nicola},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Perturbed wave equation; Resolvent estimates; Spectral theory; Fredholm theory},
language = {eng},
month = {6},
number = {2},
pages = {109-135},
publisher = {Accademia Nazionale dei Lincei},
title = {$L^\{\infty\}- L^\{2\}$ weighted estimate for the wave equation with potential},
url = {http://eudml.org/doc/252280},
volume = {14},
year = {2003},
}

TY - JOUR
AU - Georgiev, Vladimir
AU - Visciglia, Nicola
TI - $L^{\infty}- L^{2}$ weighted estimate for the wave equation with potential
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2003/6//
PB - Accademia Nazionale dei Lincei
VL - 14
IS - 2
SP - 109
EP - 135
AB - We consider a potential type perturbation of the three dimensional wave equation and we establish a dispersive estimate for the associated propagator. The main estimate is proved under the assumption that the potential $V \ge 0$ satisfies $$|V(x)| \le \frac{C}{(1+ |x|)^{2+\epsilon_{0}}},$$ where $\epsilon_{0} > 0$.
LA - eng
KW - Perturbed wave equation; Resolvent estimates; Spectral theory; Fredholm theory
UR - http://eudml.org/doc/252280
ER -

References

top
  1. AGMON, S., Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2(2), 1975, 151-218. Zbl0315.47007MR397194
  2. ALSHOLM, P. - SCHMIDT, G., Spectral and scattering theory for Schrödinger operators. Arch. Rational Mech. Anal., 40, 1970/1971, 281-311. Zbl0226.35076MR279631
  3. BARCELO, J.A. - RUIZ, A. - VEGA, L., Weighted estimates for the Helmholtz equation and some applications. J. Funct. Anal., 150(2), 1997, 356-382. Zbl0890.35028MR1479544DOI10.1006/jfan.1997.3131
  4. BEALS, M. - STRAUSS, W., L p estimates for the wave equation with a potential. Comm. Partial Differential Equations, 18(7-8), 1993, 1365-1397. Zbl0795.35059MR1233198DOI10.1080/03605309308820977
  5. BEN-ARTZI, M. - DEVINATZ, A., Resolvent estimates for a sum of tensor products with applications to the spectral theory of differential operators. J. Analyse Math., 43, 1983/84, 215-250. Zbl0591.47034MR777419DOI10.1007/BF02790185
  6. BURQ, N. - PLANCHON, F. - STALKER, J. - SHADI TAHVILDAR-ZADEH, A., Strichartz estimates for the Wave and Schrödinger Equations with the Inverse-Square Potential. Preprint, 2002. Zbl1030.35024
  7. CUCCAGNA, S., On the wave equation with a potential. Comm. Partial Differential Equations, 25(7-8), 2000, 1549-1565. Zbl0951.35021MR1765158DOI10.1080/03605300008821559
  8. IKEBE, T., Eigenfunction expansions associated with the Schroedinger operators and their applications to scattering theory. Arch. Rational Mech. Anal., 5, 1960, 1-34. Zbl0145.36902MR128355
  9. KERLER, C., Perturbations of the Laplacian with variable coefficients in exterior domains and differentiability of the resolvent. Asymptot. Anal., 19(3-4), 1999, 209-232. Zbl0942.35052MR1696215
  10. PLANCHON, F. - STALKER, J. - SHADI TAHVILDAR-ZADEH, A., l p estimates for the wave equation with the inverse-square potential. Discrete Contin. Dynam. Systems, v. 9, n. 2, 2003, 427-442. Zbl1031.35092MR1952384
  11. REED, M. - SIMON, B., Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academic Press [Harcourt Brace Jovanovich Publishers], New York1975. Zbl0242.46001MR493420
  12. ROBERT, D., Autour de l’approximation semi-classique. Progress in Mathematics, 68, Birkhäuser Boston Inc., Boston, MA, 1987. Zbl0621.35001MR897108
  13. SHATAH, J. - STRUWE, M., Geometric wave equations. Courant Lecture Notes in Mathematics, 2, New York University Courant Institute of Mathematical Sciences, New York1998. Zbl0993.35001MR1674843
  14. SJÖSTRAND, J. - ZWORSKI, M., Asymptotic distribution of resonances for convex obstacles. Acta Math., 183(2), 1999, 191-253. Zbl0989.35099MR1738044DOI10.1007/BF02392828
  15. STRICHARTZ, R.S., Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J., 44(3), 1977, 705-714. Zbl0372.35001MR512086
  16. VAINBERG, B.R., Asymptotic methods in equations of mathematical physics. (translated from the Russian by E. Primrose). Gordon & Breach Science Publishers, New York1989. Zbl0743.35001MR1054376
  17. VISCIGLIA, N., About the Strichartz estimate and the dispersive estimate. C.R. Acad. Bulgare Sci., 55(5), 2002, 9-14. Zbl1004.35027MR1938823

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.