weighted estimate for the wave equation with potential
Vladimir Georgiev; Nicola Visciglia
- Volume: 14, Issue: 2, page 109-135
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topGeorgiev, Vladimir, and Visciglia, Nicola. "$L^{\infty}- L^{2}$ weighted estimate for the wave equation with potential." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 14.2 (2003): 109-135. <http://eudml.org/doc/252280>.
@article{Georgiev2003,
abstract = {We consider a potential type perturbation of the three dimensional wave equation and we establish a dispersive estimate for the associated propagator. The main estimate is proved under the assumption that the potential $V \ge 0$ satisfies
$$|V(x)| \le \frac\{C\}\{(1+ |x|)^\{2+\epsilon\_\{0\}\}\},$$
where $\epsilon_\{0\} > 0$.},
author = {Georgiev, Vladimir, Visciglia, Nicola},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Perturbed wave equation; Resolvent estimates; Spectral theory; Fredholm theory},
language = {eng},
month = {6},
number = {2},
pages = {109-135},
publisher = {Accademia Nazionale dei Lincei},
title = {$L^\{\infty\}- L^\{2\}$ weighted estimate for the wave equation with potential},
url = {http://eudml.org/doc/252280},
volume = {14},
year = {2003},
}
TY - JOUR
AU - Georgiev, Vladimir
AU - Visciglia, Nicola
TI - $L^{\infty}- L^{2}$ weighted estimate for the wave equation with potential
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2003/6//
PB - Accademia Nazionale dei Lincei
VL - 14
IS - 2
SP - 109
EP - 135
AB - We consider a potential type perturbation of the three dimensional wave equation and we establish a dispersive estimate for the associated propagator. The main estimate is proved under the assumption that the potential $V \ge 0$ satisfies
$$|V(x)| \le \frac{C}{(1+ |x|)^{2+\epsilon_{0}}},$$
where $\epsilon_{0} > 0$.
LA - eng
KW - Perturbed wave equation; Resolvent estimates; Spectral theory; Fredholm theory
UR - http://eudml.org/doc/252280
ER -
References
top- AGMON, S., Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2(2), 1975, 151-218. Zbl0315.47007MR397194
- ALSHOLM, P. - SCHMIDT, G., Spectral and scattering theory for Schrödinger operators. Arch. Rational Mech. Anal., 40, 1970/1971, 281-311. Zbl0226.35076MR279631
- BARCELO, J.A. - RUIZ, A. - VEGA, L., Weighted estimates for the Helmholtz equation and some applications. J. Funct. Anal., 150(2), 1997, 356-382. Zbl0890.35028MR1479544DOI10.1006/jfan.1997.3131
- BEALS, M. - STRAUSS, W., estimates for the wave equation with a potential. Comm. Partial Differential Equations, 18(7-8), 1993, 1365-1397. Zbl0795.35059MR1233198DOI10.1080/03605309308820977
- BEN-ARTZI, M. - DEVINATZ, A., Resolvent estimates for a sum of tensor products with applications to the spectral theory of differential operators. J. Analyse Math., 43, 1983/84, 215-250. Zbl0591.47034MR777419DOI10.1007/BF02790185
- BURQ, N. - PLANCHON, F. - STALKER, J. - SHADI TAHVILDAR-ZADEH, A., Strichartz estimates for the Wave and Schrödinger Equations with the Inverse-Square Potential. Preprint, 2002. Zbl1030.35024
- CUCCAGNA, S., On the wave equation with a potential. Comm. Partial Differential Equations, 25(7-8), 2000, 1549-1565. Zbl0951.35021MR1765158DOI10.1080/03605300008821559
- IKEBE, T., Eigenfunction expansions associated with the Schroedinger operators and their applications to scattering theory. Arch. Rational Mech. Anal., 5, 1960, 1-34. Zbl0145.36902MR128355
- KERLER, C., Perturbations of the Laplacian with variable coefficients in exterior domains and differentiability of the resolvent. Asymptot. Anal., 19(3-4), 1999, 209-232. Zbl0942.35052MR1696215
- PLANCHON, F. - STALKER, J. - SHADI TAHVILDAR-ZADEH, A., estimates for the wave equation with the inverse-square potential. Discrete Contin. Dynam. Systems, v. 9, n. 2, 2003, 427-442. Zbl1031.35092MR1952384
- REED, M. - SIMON, B., Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academic Press [Harcourt Brace Jovanovich Publishers], New York1975. Zbl0242.46001MR493420
- ROBERT, D., Autour de l’approximation semi-classique. Progress in Mathematics, 68, Birkhäuser Boston Inc., Boston, MA, 1987. Zbl0621.35001MR897108
- SHATAH, J. - STRUWE, M., Geometric wave equations. Courant Lecture Notes in Mathematics, 2, New York University Courant Institute of Mathematical Sciences, New York1998. Zbl0993.35001MR1674843
- SJÖSTRAND, J. - ZWORSKI, M., Asymptotic distribution of resonances for convex obstacles. Acta Math., 183(2), 1999, 191-253. Zbl0989.35099MR1738044DOI10.1007/BF02392828
- STRICHARTZ, R.S., Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J., 44(3), 1977, 705-714. Zbl0372.35001MR512086
- VAINBERG, B.R., Asymptotic methods in equations of mathematical physics. (translated from the Russian by E. Primrose). Gordon & Breach Science Publishers, New York1989. Zbl0743.35001MR1054376
- VISCIGLIA, N., About the Strichartz estimate and the dispersive estimate. C.R. Acad. Bulgare Sci., 55(5), 2002, 9-14. Zbl1004.35027MR1938823
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.