Strichartz estimates for the wave equation on manifolds with boundary
Matthew D. Blair, Hart F. Smith, Christopher D. Sogge (2009)
Annales de l'I.H.P. Analyse non linéaire
Similarity:
Matthew D. Blair, Hart F. Smith, Christopher D. Sogge (2009)
Annales de l'I.H.P. Analyse non linéaire
Similarity:
Christopher D. Sogge (1993)
Journées équations aux dérivées partielles
Similarity:
Michael Beals, Walter Strauss (1991)
Journées équations aux dérivées partielles
Similarity:
Fabrice Planchon (1999)
Journées équations aux dérivées partielles
Similarity:
We prove that the initial value problem for the semi-linear Schrödinger and wave equations is well-posed in the Besov space , when the nonlinearity is of type , for . This allows us to obtain self-similar solutions, as well as to recover previously known results for the solutions under weaker smallness assumptions on the data.
Paolo Secchi (2002)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Erik Skibsted (1990)
Journées équations aux dérivées partielles
Similarity:
Georgiev, V. (1996)
Serdica Mathematical Journal
Similarity:
∗The author was partially supported by Alexander von Humboldt Foundation and the Contract MM-516 with the Bulgarian Ministry of Education, Science and Thechnology. In this work we study the existence of global solution to the semilinear wave equation (1.1) (∂2t − ∆)u = F(u), where F(u) = O(|u|^λ) near |u| = 0 and λ > 1. Here and below ∆ denotes the Laplace operator on R^n. The existence of solutions with small initial data, for the case of space dimensions n = 3 was...