Quasireverse Hölder inequalities and a priori estimates for strongly nonlinear systems
- Volume: 14, Issue: 2, page 91-108
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topArkhipova, Arina A.. "Quasireverse Hölder inequalities and a priori estimates for strongly nonlinear systems." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 14.2 (2003): 91-108. <http://eudml.org/doc/252282>.
@article{Arkhipova2003,
abstract = {It is proved that a function can be estimated in the norm with a higher degree of summability if it satisfies some integral relations similar to the reverse Hölder inequalities (quasireverse Hölder inequalities). As an example, we apply this result to derive an a priori estimate of the Hölder norm for a solution of strongly nonlinear elliptic system.},
author = {Arkhipova, Arina A.},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Boundary value problem; Reverse Hölder inequalities; Elliptic system; boundary value problem; reverse Hölder inequalities; elliptic system},
language = {eng},
month = {6},
number = {2},
pages = {91-108},
publisher = {Accademia Nazionale dei Lincei},
title = {Quasireverse Hölder inequalities and a priori estimates for strongly nonlinear systems},
url = {http://eudml.org/doc/252282},
volume = {14},
year = {2003},
}
TY - JOUR
AU - Arkhipova, Arina A.
TI - Quasireverse Hölder inequalities and a priori estimates for strongly nonlinear systems
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2003/6//
PB - Accademia Nazionale dei Lincei
VL - 14
IS - 2
SP - 91
EP - 108
AB - It is proved that a function can be estimated in the norm with a higher degree of summability if it satisfies some integral relations similar to the reverse Hölder inequalities (quasireverse Hölder inequalities). As an example, we apply this result to derive an a priori estimate of the Hölder norm for a solution of strongly nonlinear elliptic system.
LA - eng
KW - Boundary value problem; Reverse Hölder inequalities; Elliptic system; boundary value problem; reverse Hölder inequalities; elliptic system
UR - http://eudml.org/doc/252282
ER -
References
top- GEHRING, F.W., The -integrability of the partial derivatives of a quasi conformal mapping. Acta Math., 130, 1973, 265-277. Zbl0258.30021MR402038
- GIAQUINTA, M. - MODICA, G., Regularity results for some classes of higher order non-linear elliptic systems. J. für Reine u. Angew. Math., 311/312, 1979, 145-169. Zbl0409.35015MR549962
- STREDULINSKY, E.W., Higher integrability from reverce Hölder inequalities. Indiana Univ. Math. J., 29, 3, 1980, 408-417. Zbl0442.35064MR570689DOI10.1512/iumj.1980.29.29029
- ARKHIPOVA, A.A., Reverse Hölder inequalities with boundary integrals and -estimates for solution of nonlinear elliptic and parabolic boundary-value problems. Advances in Math. Sci. Translations, Ser. 2, 164, 1995, 15-42. Zbl0838.35021MR1334137
- ARKHIPOVA, A.A. - LADYZHENSKAYA, O.A., On a modification of Gehring lemma. Zapiski Nauchn, Semin. POMI, St-Petersburg, 259, 1999, 7-18. Zbl0979.35062
- ARKHIPOVA, A.A., On the regularity of the solution of the Neumann problem for quasilinear parabolic systems. Russian Acad. Sci. Izv. Math., 45, 1995, 231-253. Zbl0857.35054MR1307308DOI10.1070/IM1995v045n02ABEH001576
- GIAQUINTA, M., Multiple integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Math., Studies105, Princeton Univ. Press, Princeton1983. Zbl0516.49003MR717034
- GIAQUINTA, M. - GIUSTI, E., Non linear elliptic systems with Quadratic growth. Manuscripta Math., 24, 1978, 323-349. Zbl0378.35027MR481490
- KUFNER, A. - JOHN, O. - FUČIK, S., Functional Spases. Academia, Prague1977.
- FREHSE, J., On two-dimensional quasi-linear elliptic systems. Manuscripta Math., 28, 1979, 21-50. Zbl0415.35025MR535693DOI10.1007/BF01647963
- HAMBURGER, C., A new partial regularity proof for solutions of nonlinear elliptic systems. Manuscripta Math., 95, n. 1, 1998, 11-31. Zbl0901.35013MR1492366DOI10.1007/BF02678012
- TROIANIELLO, G.M., Elliptic differential equations and obstacle problems. Plenum, New York-London1987. Zbl0655.35002MR1094820
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.