A priori estimates for quasilinear parabolic systems with quadratic nonlinearities in the gradient

Arina A. Arkhipova; Jana Stará

Commentationes Mathematicae Universitatis Carolinae (2010)

  • Volume: 51, Issue: 4, page 639-652
  • ISSN: 0010-2628

Abstract

top
We derive local a priori estimates of the Hölder norm of solutions to quasilinear elliptic systems with quadratic nonlinearities in the gradient. We assume higher integrability of solutions and smallness of its BMO norm but the Hölder norm is estimated in terms of BMO norm of the solution under consideration, only.

How to cite

top

Arkhipova, Arina A., and Stará, Jana. "A priori estimates for quasilinear parabolic systems with quadratic nonlinearities in the gradient." Commentationes Mathematicae Universitatis Carolinae 51.4 (2010): 639-652. <http://eudml.org/doc/246945>.

@article{Arkhipova2010,
abstract = {We derive local a priori estimates of the Hölder norm of solutions to quasilinear elliptic systems with quadratic nonlinearities in the gradient. We assume higher integrability of solutions and smallness of its BMO norm but the Hölder norm is estimated in terms of BMO norm of the solution under consideration, only.},
author = {Arkhipova, Arina A., Stará, Jana},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {quasilinear parabolic systems; quadratic nonlinearities; regularity; Morrey; VMO spaces; quasilinear parabolic system; quadratic nonlinearity; regularity; Morrey; VMO space},
language = {eng},
number = {4},
pages = {639-652},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A priori estimates for quasilinear parabolic systems with quadratic nonlinearities in the gradient},
url = {http://eudml.org/doc/246945},
volume = {51},
year = {2010},
}

TY - JOUR
AU - Arkhipova, Arina A.
AU - Stará, Jana
TI - A priori estimates for quasilinear parabolic systems with quadratic nonlinearities in the gradient
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 4
SP - 639
EP - 652
AB - We derive local a priori estimates of the Hölder norm of solutions to quasilinear elliptic systems with quadratic nonlinearities in the gradient. We assume higher integrability of solutions and smallness of its BMO norm but the Hölder norm is estimated in terms of BMO norm of the solution under consideration, only.
LA - eng
KW - quasilinear parabolic systems; quadratic nonlinearities; regularity; Morrey; VMO spaces; quasilinear parabolic system; quadratic nonlinearity; regularity; Morrey; VMO space
UR - http://eudml.org/doc/246945
ER -

References

top
  1. Arkhipova A., On the partial regularity up to the boundary of weak solutions to quasilinear parabolic systems with quadratic growth, Zap. Nauchn. Sem. POMI, St-Petersburg 249 (1997), 3–23. 
  2. Arkhipova A., New a priori estimates for q-nonlinear elliptic systems with strong nonlinearities in the gradient, 1 < q < 2 , Zap. Nauchn. Sem. POMI, St-Petersburg 310 (2003), 19–48. Zbl1102.35037MR2120183
  3. Arkhipova A., Quasireverse Hölder inequalities in parabolic metric and their applications, Amer. Math. Transl. (2) 220 (2007), 1–25. MR2343604
  4. Arkhipova A., 10.4064/bc81-0-1, Banach Center Publ. 81 (2008), 13–30. Zbl1156.35336MR2549320DOI10.4064/bc81-0-1
  5. Arkhipova A., Quasireverse Hölder inequalities and a priori estimates for quasilinear elliptic systems, Rend. Mat. Accad. Lincei 14 (2003), 91–108. MR2053660
  6. Arkhipova A., 10.1070/IM2004v068n02ABEH000473, Russian Acad. Izvestia Math. 68 (2004), 243–258. MR2057998DOI10.1070/IM2004v068n02ABEH000473
  7. Bögelein V., 10.1007/s10231-008-0067-4, Ann. Mat. Pura Appl. 188 (2009), no. 1, 61–122. MR2447930DOI10.1007/s10231-008-0067-4
  8. Campanato S., L p -regularity for weak solutions of parabolic systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980), 65–85. Zbl0777.35028MR0577326
  9. Chen Y., Struwe M., 10.1007/BF01161997, Math. Z. 201 (1989), 83–103. MR0990191DOI10.1007/BF01161997
  10. Chiarenza P., Frasca M., Longo P., W 2 , p estimates for non divergence elliptic equations with discontinuous coefficients, Ricerche Mat. 40 (1991), 149–168. Zbl0818.35023MR1191890
  11. Daněček J., Viszus E., L 2 , λ -regularity for minima of variational integrals, Boll. Unione Mat. Ital. B 8 (2003), 39–48. MR1955695
  12. De Giorgi E., Frontiere orientate di misura minima, Seminario di Mat. della Scuola Normale Superiore, Pisa, 1960–1961. Zbl0296.49031
  13. Duzaar F., Grotowski J.F., 10.1007/s002290070007, Manuscripta Math. 103 (2000), 267–298. MR1802484DOI10.1007/s002290070007
  14. Duzaar F., Mingione G.:, 10.1016/j.anihpc.2004.10.011, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 705–751. Zbl1099.35042MR2172857DOI10.1016/j.anihpc.2004.10.011
  15. Giaquinta M., Giusti E., 10.1007/BF01167835, Manuscripta Math. 24 (1978), 323–349. Zbl0378.35027MR0481490DOI10.1007/BF01167835
  16. Giaquinta M., Modica G., Nonlinear systems of the type of the stationary Navier-Stokes system, J. Reine Angew. Math. 330 (1982), 173–214. MR0641818
  17. Giaquinta M., Struwe M., 10.1007/BF01215058, Math. Z. 179 (1982). MR0652852DOI10.1007/BF01215058
  18. Grotowski G.F., Boundary regularity results for nonlinear elliptic systems in divergence form, Habilitationsschrift, Math. Institut der Friedrich-Alexander-Univ., Erlangen-Nürenberg, 2000. 
  19. Huang Q., 10.1512/iumj.1996.45.1968, Indiana Univ. Math. J. 45 (1996), 397–439. Zbl0863.35023MR1414336DOI10.1512/iumj.1996.45.1968
  20. Ivert P.-A., Naumann J., Higher integrability by reverse Hölder inequality (the parabolic case), Preprint, Dip. Matem., Univ. Catania, 1988. 
  21. John O., Stará J., On some regularity and nonregularity results for solutions to parabolic systems, Matematiche (Catania) 55 (2000), suppl. 2, 145–163. MR1899663
  22. Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Linear and Quasilinear Equations of Parabolic Type, Translations of Math. Monographs, 23, American Mathematical Society, Providence, RI, 1968. 
  23. Marino M., Maugeri A., Partial Hölder continuity of solutions of nonlinear parabolic systems of second order with quadratic growth, Boll. Un. Mat. Ital. B (7) 3 (1989), 397–435, 437–451. Zbl0687.35024MR0998004
  24. Marino M., Maugeri A., A remark on the note: Partial Hölder continuity of the spatial derivatives of the solutions to nonlinear parabolic systems with quadratic growth, Rend. Sem. Mat. Univ. Padova 95 (1996), 23–28. Zbl0990.35062MR1405352
  25. Pošta M., On partial regularity of solutions to the quasilinear parabolic system up to the boundary, preprint no. MATH-KMA-2007/231, http://www.karlin.mff.cuni.cz/kma-preprints/. 
  26. Ragusa M.A., Tachikawa A., 10.1112/S002461070500699X, J. London Math. Soc. 72 (2005), 609–620. Zbl1161.35347MR2190327DOI10.1112/S002461070500699X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.