A priori estimates for quasilinear parabolic systems with quadratic nonlinearities in the gradient
Arina A. Arkhipova; Jana Stará
Commentationes Mathematicae Universitatis Carolinae (2010)
- Volume: 51, Issue: 4, page 639-652
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topArkhipova, Arina A., and Stará, Jana. "A priori estimates for quasilinear parabolic systems with quadratic nonlinearities in the gradient." Commentationes Mathematicae Universitatis Carolinae 51.4 (2010): 639-652. <http://eudml.org/doc/246945>.
@article{Arkhipova2010,
abstract = {We derive local a priori estimates of the Hölder norm of solutions to quasilinear elliptic systems with quadratic nonlinearities in the gradient. We assume higher integrability of solutions and smallness of its BMO norm but the Hölder norm is estimated in terms of BMO norm of the solution under consideration, only.},
author = {Arkhipova, Arina A., Stará, Jana},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {quasilinear parabolic systems; quadratic nonlinearities; regularity; Morrey; VMO spaces; quasilinear parabolic system; quadratic nonlinearity; regularity; Morrey; VMO space},
language = {eng},
number = {4},
pages = {639-652},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A priori estimates for quasilinear parabolic systems with quadratic nonlinearities in the gradient},
url = {http://eudml.org/doc/246945},
volume = {51},
year = {2010},
}
TY - JOUR
AU - Arkhipova, Arina A.
AU - Stará, Jana
TI - A priori estimates for quasilinear parabolic systems with quadratic nonlinearities in the gradient
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 4
SP - 639
EP - 652
AB - We derive local a priori estimates of the Hölder norm of solutions to quasilinear elliptic systems with quadratic nonlinearities in the gradient. We assume higher integrability of solutions and smallness of its BMO norm but the Hölder norm is estimated in terms of BMO norm of the solution under consideration, only.
LA - eng
KW - quasilinear parabolic systems; quadratic nonlinearities; regularity; Morrey; VMO spaces; quasilinear parabolic system; quadratic nonlinearity; regularity; Morrey; VMO space
UR - http://eudml.org/doc/246945
ER -
References
top- Arkhipova A., On the partial regularity up to the boundary of weak solutions to quasilinear parabolic systems with quadratic growth, Zap. Nauchn. Sem. POMI, St-Petersburg 249 (1997), 3–23.
- Arkhipova A., New a priori estimates for q-nonlinear elliptic systems with strong nonlinearities in the gradient, , Zap. Nauchn. Sem. POMI, St-Petersburg 310 (2003), 19–48. Zbl1102.35037MR2120183
- Arkhipova A., Quasireverse Hölder inequalities in parabolic metric and their applications, Amer. Math. Transl. (2) 220 (2007), 1–25. MR2343604
- Arkhipova A., 10.4064/bc81-0-1, Banach Center Publ. 81 (2008), 13–30. Zbl1156.35336MR2549320DOI10.4064/bc81-0-1
- Arkhipova A., Quasireverse Hölder inequalities and a priori estimates for quasilinear elliptic systems, Rend. Mat. Accad. Lincei 14 (2003), 91–108. MR2053660
- Arkhipova A., 10.1070/IM2004v068n02ABEH000473, Russian Acad. Izvestia Math. 68 (2004), 243–258. MR2057998DOI10.1070/IM2004v068n02ABEH000473
- Bögelein V., 10.1007/s10231-008-0067-4, Ann. Mat. Pura Appl. 188 (2009), no. 1, 61–122. MR2447930DOI10.1007/s10231-008-0067-4
- Campanato S., -regularity for weak solutions of parabolic systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980), 65–85. Zbl0777.35028MR0577326
- Chen Y., Struwe M., 10.1007/BF01161997, Math. Z. 201 (1989), 83–103. MR0990191DOI10.1007/BF01161997
- Chiarenza P., Frasca M., Longo P., estimates for non divergence elliptic equations with discontinuous coefficients, Ricerche Mat. 40 (1991), 149–168. Zbl0818.35023MR1191890
- Daněček J., Viszus E., -regularity for minima of variational integrals, Boll. Unione Mat. Ital. B 8 (2003), 39–48. MR1955695
- De Giorgi E., Frontiere orientate di misura minima, Seminario di Mat. della Scuola Normale Superiore, Pisa, 1960–1961. Zbl0296.49031
- Duzaar F., Grotowski J.F., 10.1007/s002290070007, Manuscripta Math. 103 (2000), 267–298. MR1802484DOI10.1007/s002290070007
- Duzaar F., Mingione G.:, 10.1016/j.anihpc.2004.10.011, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 705–751. Zbl1099.35042MR2172857DOI10.1016/j.anihpc.2004.10.011
- Giaquinta M., Giusti E., 10.1007/BF01167835, Manuscripta Math. 24 (1978), 323–349. Zbl0378.35027MR0481490DOI10.1007/BF01167835
- Giaquinta M., Modica G., Nonlinear systems of the type of the stationary Navier-Stokes system, J. Reine Angew. Math. 330 (1982), 173–214. MR0641818
- Giaquinta M., Struwe M., 10.1007/BF01215058, Math. Z. 179 (1982). MR0652852DOI10.1007/BF01215058
- Grotowski G.F., Boundary regularity results for nonlinear elliptic systems in divergence form, Habilitationsschrift, Math. Institut der Friedrich-Alexander-Univ., Erlangen-Nürenberg, 2000.
- Huang Q., 10.1512/iumj.1996.45.1968, Indiana Univ. Math. J. 45 (1996), 397–439. Zbl0863.35023MR1414336DOI10.1512/iumj.1996.45.1968
- Ivert P.-A., Naumann J., Higher integrability by reverse Hölder inequality (the parabolic case), Preprint, Dip. Matem., Univ. Catania, 1988.
- John O., Stará J., On some regularity and nonregularity results for solutions to parabolic systems, Matematiche (Catania) 55 (2000), suppl. 2, 145–163. MR1899663
- Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Linear and Quasilinear Equations of Parabolic Type, Translations of Math. Monographs, 23, American Mathematical Society, Providence, RI, 1968.
- Marino M., Maugeri A., Partial Hölder continuity of solutions of nonlinear parabolic systems of second order with quadratic growth, Boll. Un. Mat. Ital. B (7) 3 (1989), 397–435, 437–451. Zbl0687.35024MR0998004
- Marino M., Maugeri A., A remark on the note: Partial Hölder continuity of the spatial derivatives of the solutions to nonlinear parabolic systems with quadratic growth, Rend. Sem. Mat. Univ. Padova 95 (1996), 23–28. Zbl0990.35062MR1405352
- Pošta M., On partial regularity of solutions to the quasilinear parabolic system up to the boundary, preprint no. MATH-KMA-2007/231, http://www.karlin.mff.cuni.cz/kma-preprints/.
- Ragusa M.A., Tachikawa A., 10.1112/S002461070500699X, J. London Math. Soc. 72 (2005), 609–620. Zbl1161.35347MR2190327DOI10.1112/S002461070500699X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.