Some properties of two-scale convergence
- Volume: 15, Issue: 2, page 93-107
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topVisintin, Augusto. "Some properties of two-scale convergence." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 15.2 (2004): 93-107. <http://eudml.org/doc/252290>.
@article{Visintin2004,
abstract = {We reformulate and extend G. Nguetseng’s notion of two-scale convergence by means of a variable transformation, and outline some of its properties. We approximate two-scale derivatives, and extend this convergence to spaces of differentiable functions. The two-scale limit of derivatives of bounded sequences in the Sobolev spaces $W^\{1,p\}(\mathbb\{R\}^\{N\})$, $L^\{2\}_\{rot\}(\mathbb\{R\}^\{3\})^\{3\}$, $L^\{2\}_\{div\}(\mathbb\{R\}^\{3\})^\{3\}$ and $W^\{2,p\}(\mathbb\{R\}^\{N\})$ is then characterized. The two-scale limit behaviour of the potentials of a two-scale convergent sequence of irrotational fields is finally studied.},
author = {Visintin, Augusto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Two-scale convergence; Two-scale decomposition; Sobolev spaces; two-scale convergence; two-scale decomposition},
language = {eng},
month = {6},
number = {2},
pages = {93-107},
publisher = {Accademia Nazionale dei Lincei},
title = {Some properties of two-scale convergence},
url = {http://eudml.org/doc/252290},
volume = {15},
year = {2004},
}
TY - JOUR
AU - Visintin, Augusto
TI - Some properties of two-scale convergence
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2004/6//
PB - Accademia Nazionale dei Lincei
VL - 15
IS - 2
SP - 93
EP - 107
AB - We reformulate and extend G. Nguetseng’s notion of two-scale convergence by means of a variable transformation, and outline some of its properties. We approximate two-scale derivatives, and extend this convergence to spaces of differentiable functions. The two-scale limit of derivatives of bounded sequences in the Sobolev spaces $W^{1,p}(\mathbb{R}^{N})$, $L^{2}_{rot}(\mathbb{R}^{3})^{3}$, $L^{2}_{div}(\mathbb{R}^{3})^{3}$ and $W^{2,p}(\mathbb{R}^{N})$ is then characterized. The two-scale limit behaviour of the potentials of a two-scale convergent sequence of irrotational fields is finally studied.
LA - eng
KW - Two-scale convergence; Two-scale decomposition; Sobolev spaces; two-scale convergence; two-scale decomposition
UR - http://eudml.org/doc/252290
ER -
References
top- ALLAIRE, G., Homogenization and two-scale convergence. S.I.A.M. J. Math. Anal., 23, 1992, 1482-1518. Zbl0770.35005MR1185639DOI10.1137/0523084
- ALLAIRE, G., Shape Optimization by the Homogenization Method. Springer, New York2002. Zbl0990.35001MR1859696
- ARBOGAST, T. - DOUGLAS, J. - HORNUNG, U., Derivation of the double porosity model of single phase flow via homogenization theory. S.I.A.M. J. Math. Anal., 21, 1990, 823-836. Zbl0698.76106MR1052874DOI10.1137/0521046
- BENSOUSSAN, A. - LIONS, J.L. - PAPANICOLAOU, G., Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam1978. Zbl0404.35001MR503330
- BOURGEAT, A. - LUCKHAUS, S. - MIKELIC, A., Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow. S.I.A.M. J. Math. Anal., 27, 1996, 1520-1543. Zbl0866.35018MR1416507DOI10.1137/S0036141094276457
- BROOKS, J.K. - CHACON, R.V., Continuity and compactness of measures. Adv. in Math., 37, 1980, 16-26. Zbl0463.28003MR585896DOI10.1016/0001-8708(80)90023-7
- CASADO-DIAZ, J. - GAYTE, I., A general compactness result and its application to two-scale convergence of almost periodic functions. C.R. Acad. Sci. Paris, Ser. I, 323, 1996, 329-334. Zbl0865.46003MR1408763
- CIORANESCU, D. - DAMLAMIAN, A. - GRISO, G., Periodic unfolding and homogenization. C.R. Acad. Sci. Paris, Ser. I, 335, 2002, 99-104. Zbl1001.49016MR1921004DOI10.1016/S1631-073X(02)02429-9
- CIORANESCU, D. - DONATO, P., An Introduction to Homogenization. Oxford Univ. Press, New York1999. Zbl0939.35001MR1765047
- JIKOV, V.V. - KOZLOV, S.M. - OLEINIK, O.A., Homogenization of Differential Operators and Integral Functionals. Springer, Berlin1994. Zbl0801.35001MR1329546DOI10.1007/978-3-642-84659-5
- LENCZNER, M., Homogénéisation d’un circuit électrique. C.R. Acad. Sci. Paris, Ser. II, 324, 1997, 537-542. Zbl0887.35016
- LENCZNER, M. - SENOUCI, G., Homogenization of electrical networks including voltage-to-voltage amplifiers. Math. Models Meth. Appl. Sci., 9, 1999, 899-932. Zbl0963.35014MR1702869DOI10.1142/S0218202599000415
- LUKKASSEN, D. - NGUETSENG, G. - WALL, P., Two-scale convergence. Int. J. Pure Appl. Math., 2, 2002, 35-86. Zbl1061.35015MR1912819
- MURAT, F. - TARTAR, L., -convergence. In: A. CHERKAEV - R. KOHN (eds.), Topics in the Mathematical Modelling of Composite Materials. Birkhäuser, Boston1997, 21-44. Zbl0920.35019MR1493039
- NGUETSENG, G., A general convergence result for a functional related to the theory of homogenization. S.I.A.M. J. Math. Anal., 20, 1989, 608-623. Zbl0688.35007MR990867DOI10.1137/0520043
- NGUETSENG, G., Asymptotic analysis for a stiff variational problem arising in mechanics. S.I.A.M. J. Math. Anal., 21, 1990, 1394-1414. Zbl0723.73011MR1075584DOI10.1137/0521078
- TARTAR, L., Mathematical tools for studying oscillations and concentrations: from Young measures to -measures and their variants. In: N. ANTONIĆ - C.J. VAN DUIJN - W. JÄGER - A. MIKELIĆ (eds.), Multiscale Problems in Science and Technology. Springer, Berlin2002, 1-84. Zbl1015.35001MR1998790
- WEINAN, E., Homogenization of linear and nonlinear transport equations. Comm. Pure Appl. Math., 45, 1992, 301-326. Zbl0794.35014MR1151269DOI10.1002/cpa.3160450304
- ZHIKOV, V.V., On an extension of the method of two-scale convergence and its applications. Sb. Math., 191, 2000, 973-1014. Zbl0969.35048MR1809928DOI10.1070/SM2000v191n07ABEH000491
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.