Some properties of two-scale convergence

Augusto Visintin

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2004)

  • Volume: 15, Issue: 2, page 93-107
  • ISSN: 1120-6330

Abstract

top
We reformulate and extend G. Nguetseng’s notion of two-scale convergence by means of a variable transformation, and outline some of its properties. We approximate two-scale derivatives, and extend this convergence to spaces of differentiable functions. The two-scale limit of derivatives of bounded sequences in the Sobolev spaces W 1 , p R N , L r o t 2 R 3 3 , L d i v 2 R 3 3 and W 2 , p R N is then characterized. The two-scale limit behaviour of the potentials of a two-scale convergent sequence of irrotational fields is finally studied.

How to cite

top

Visintin, Augusto. "Some properties of two-scale convergence." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 15.2 (2004): 93-107. <http://eudml.org/doc/252290>.

@article{Visintin2004,
abstract = {We reformulate and extend G. Nguetseng’s notion of two-scale convergence by means of a variable transformation, and outline some of its properties. We approximate two-scale derivatives, and extend this convergence to spaces of differentiable functions. The two-scale limit of derivatives of bounded sequences in the Sobolev spaces $W^\{1,p\}(\mathbb\{R\}^\{N\})$, $L^\{2\}_\{rot\}(\mathbb\{R\}^\{3\})^\{3\}$, $L^\{2\}_\{div\}(\mathbb\{R\}^\{3\})^\{3\}$ and $W^\{2,p\}(\mathbb\{R\}^\{N\})$ is then characterized. The two-scale limit behaviour of the potentials of a two-scale convergent sequence of irrotational fields is finally studied.},
author = {Visintin, Augusto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Two-scale convergence; Two-scale decomposition; Sobolev spaces; two-scale convergence; two-scale decomposition},
language = {eng},
month = {6},
number = {2},
pages = {93-107},
publisher = {Accademia Nazionale dei Lincei},
title = {Some properties of two-scale convergence},
url = {http://eudml.org/doc/252290},
volume = {15},
year = {2004},
}

TY - JOUR
AU - Visintin, Augusto
TI - Some properties of two-scale convergence
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2004/6//
PB - Accademia Nazionale dei Lincei
VL - 15
IS - 2
SP - 93
EP - 107
AB - We reformulate and extend G. Nguetseng’s notion of two-scale convergence by means of a variable transformation, and outline some of its properties. We approximate two-scale derivatives, and extend this convergence to spaces of differentiable functions. The two-scale limit of derivatives of bounded sequences in the Sobolev spaces $W^{1,p}(\mathbb{R}^{N})$, $L^{2}_{rot}(\mathbb{R}^{3})^{3}$, $L^{2}_{div}(\mathbb{R}^{3})^{3}$ and $W^{2,p}(\mathbb{R}^{N})$ is then characterized. The two-scale limit behaviour of the potentials of a two-scale convergent sequence of irrotational fields is finally studied.
LA - eng
KW - Two-scale convergence; Two-scale decomposition; Sobolev spaces; two-scale convergence; two-scale decomposition
UR - http://eudml.org/doc/252290
ER -

References

top
  1. ALLAIRE, G., Homogenization and two-scale convergence. S.I.A.M. J. Math. Anal., 23, 1992, 1482-1518. Zbl0770.35005MR1185639DOI10.1137/0523084
  2. ALLAIRE, G., Shape Optimization by the Homogenization Method. Springer, New York2002. Zbl0990.35001MR1859696
  3. ARBOGAST, T. - DOUGLAS, J. - HORNUNG, U., Derivation of the double porosity model of single phase flow via homogenization theory. S.I.A.M. J. Math. Anal., 21, 1990, 823-836. Zbl0698.76106MR1052874DOI10.1137/0521046
  4. BENSOUSSAN, A. - LIONS, J.L. - PAPANICOLAOU, G., Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam1978. Zbl0404.35001MR503330
  5. BOURGEAT, A. - LUCKHAUS, S. - MIKELIC, A., Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow. S.I.A.M. J. Math. Anal., 27, 1996, 1520-1543. Zbl0866.35018MR1416507DOI10.1137/S0036141094276457
  6. BROOKS, J.K. - CHACON, R.V., Continuity and compactness of measures. Adv. in Math., 37, 1980, 16-26. Zbl0463.28003MR585896DOI10.1016/0001-8708(80)90023-7
  7. CASADO-DIAZ, J. - GAYTE, I., A general compactness result and its application to two-scale convergence of almost periodic functions. C.R. Acad. Sci. Paris, Ser. I, 323, 1996, 329-334. Zbl0865.46003MR1408763
  8. CIORANESCU, D. - DAMLAMIAN, A. - GRISO, G., Periodic unfolding and homogenization. C.R. Acad. Sci. Paris, Ser. I, 335, 2002, 99-104. Zbl1001.49016MR1921004DOI10.1016/S1631-073X(02)02429-9
  9. CIORANESCU, D. - DONATO, P., An Introduction to Homogenization. Oxford Univ. Press, New York1999. Zbl0939.35001MR1765047
  10. JIKOV, V.V. - KOZLOV, S.M. - OLEINIK, O.A., Homogenization of Differential Operators and Integral Functionals. Springer, Berlin1994. Zbl0801.35001MR1329546DOI10.1007/978-3-642-84659-5
  11. LENCZNER, M., Homogénéisation d’un circuit électrique. C.R. Acad. Sci. Paris, Ser. II, 324, 1997, 537-542. Zbl0887.35016
  12. LENCZNER, M. - SENOUCI, G., Homogenization of electrical networks including voltage-to-voltage amplifiers. Math. Models Meth. Appl. Sci., 9, 1999, 899-932. Zbl0963.35014MR1702869DOI10.1142/S0218202599000415
  13. LUKKASSEN, D. - NGUETSENG, G. - WALL, P., Two-scale convergence. Int. J. Pure Appl. Math., 2, 2002, 35-86. Zbl1061.35015MR1912819
  14. MURAT, F. - TARTAR, L., H -convergence. In: A. CHERKAEV - R. KOHN (eds.), Topics in the Mathematical Modelling of Composite Materials. Birkhäuser, Boston1997, 21-44. Zbl0920.35019MR1493039
  15. NGUETSENG, G., A general convergence result for a functional related to the theory of homogenization. S.I.A.M. J. Math. Anal., 20, 1989, 608-623. Zbl0688.35007MR990867DOI10.1137/0520043
  16. NGUETSENG, G., Asymptotic analysis for a stiff variational problem arising in mechanics. S.I.A.M. J. Math. Anal., 21, 1990, 1394-1414. Zbl0723.73011MR1075584DOI10.1137/0521078
  17. TARTAR, L., Mathematical tools for studying oscillations and concentrations: from Young measures to H -measures and their variants. In: N. ANTONIĆ - C.J. VAN DUIJN - W. JÄGER - A. MIKELIĆ (eds.), Multiscale Problems in Science and Technology. Springer, Berlin2002, 1-84. Zbl1015.35001MR1998790
  18. WEINAN, E., Homogenization of linear and nonlinear transport equations. Comm. Pure Appl. Math., 45, 1992, 301-326. Zbl0794.35014MR1151269DOI10.1002/cpa.3160450304
  19. ZHIKOV, V.V., On an extension of the method of two-scale convergence and its applications. Sb. Math., 191, 2000, 973-1014. Zbl0969.35048MR1809928DOI10.1070/SM2000v191n07ABEH000491

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.