Two-scale div-curl lemma

Augusto Visintin

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2007)

  • Volume: 6, Issue: 2, page 291-321
  • ISSN: 0391-173X

Abstract

top
The div-curl lemma, one of the basic results of the theory of compensated compactness of Murat and Tartar, does not take over to the case in which the two factors two-scale converge in the sense of Nguetseng. A suitable modification of the differential operators however allows for this extension. The argument follows the lines of a well-known paper of F. Murat of 1978, and uses a two-scale extension of the Fourier transform. This result is also extended to time-dependent functions, and is applied to a two-scale formulation of the Maxwell system of electromagnetism, that accounts for the energy embedded in both coarse- and fine-scale oscillations.

How to cite

top

Visintin, Augusto. "Two-scale div-curl lemma." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.2 (2007): 291-321. <http://eudml.org/doc/272264>.

@article{Visintin2007,
abstract = {The div-curl lemma, one of the basic results of the theory of compensated compactness of Murat and Tartar, does not take over to the case in which the two factors two-scale converge in the sense of Nguetseng. A suitable modification of the differential operators however allows for this extension. The argument follows the lines of a well-known paper of F. Murat of 1978, and uses a two-scale extension of the Fourier transform. This result is also extended to time-dependent functions, and is applied to a two-scale formulation of the Maxwell system of electromagnetism, that accounts for the energy embedded in both coarse- and fine-scale oscillations.},
author = {Visintin, Augusto},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {compensated compactness; two-scale Fourier transform},
language = {eng},
number = {2},
pages = {291-321},
publisher = {Scuola Normale Superiore, Pisa},
title = {Two-scale div-curl lemma},
url = {http://eudml.org/doc/272264},
volume = {6},
year = {2007},
}

TY - JOUR
AU - Visintin, Augusto
TI - Two-scale div-curl lemma
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2007
PB - Scuola Normale Superiore, Pisa
VL - 6
IS - 2
SP - 291
EP - 321
AB - The div-curl lemma, one of the basic results of the theory of compensated compactness of Murat and Tartar, does not take over to the case in which the two factors two-scale converge in the sense of Nguetseng. A suitable modification of the differential operators however allows for this extension. The argument follows the lines of a well-known paper of F. Murat of 1978, and uses a two-scale extension of the Fourier transform. This result is also extended to time-dependent functions, and is applied to a two-scale formulation of the Maxwell system of electromagnetism, that accounts for the energy embedded in both coarse- and fine-scale oscillations.
LA - eng
KW - compensated compactness; two-scale Fourier transform
UR - http://eudml.org/doc/272264
ER -

References

top
  1. [1] G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal.23 (1992), 1482–1518. Zbl0770.35005MR1185639
  2. [2] G. Allaire, “Shape Optimization by the Homogenization Method”, Springer, New York, 2002. Zbl0990.35001MR1859696
  3. [3] T. Arbogast, J. Douglas, U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal.21 (1990), 823–836. Zbl0698.76106MR1052874
  4. [4] J.-P. Aubin, Un théorème de compacité, C.R. Acad. Sci. Paris, Série I 256 (1963), 5042–5044. Zbl0195.13002MR152860
  5. [5] N. Bakhvalov and G. Panasenko, “Homogenisation: Averaging Processes in Periodic Media”, Kluwer, Dordrecht, 1989. Zbl0692.73012MR1112788
  6. [6] G. Bensoussan, J..L. Lions and G. Papanicolaou, “Asymptotic Analysis for Periodic Structures”, North-Holland, Amsterdam, 1978. Zbl0404.35001MR503330
  7. [7] A. Bourgeat, S. Luckhaus and A. Mikelić, Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow, SIAM J. Math. Anal.27 (1996), 1520–1543. Zbl0866.35018MR1416507
  8. [8] H. Brezis, “Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert”, North-Holland, Amsterdam, 1973. Zbl0252.47055MR348562
  9. [9] M. Briane and J. Casado-Díaz, Lack of compactness in two-scale convergence, SIAM J. Math. Anal.37 (2005), 343–346. Zbl1112.35016MR2176106
  10. [10] D. Cioranescu, A. Damlamian and G. Griso, Periodic unfolding and homogenization, C.R. Acad. Sci. Paris, Sér. I 335 (2002), 99–104. Zbl1001.49016MR1921004
  11. [11] D. Cioranescu and P. Donato, “An Introduction to Homogenization”, Oxford Univ. Press, New York, 1999. Zbl0939.35001MR1765047
  12. [12] I. Ekeland and R. Temam, “Analyse Convexe et Problèmes Variationnelles”, Dunod Gauthier-Villars, Paris, 1974. Zbl0281.49001MR463993
  13. [13] J.-B. Hiriart-Urruty and C. Lemarechal, “Convex Analysis and Optimization Algorithms”, Springer, Berlin, 1993. Zbl0795.49001
  14. [14] J. D. Jackson, “Classical Electrodynamics”, Wiley, Chichester, 1962. Zbl0997.78500MR436782
  15. [15] V. V. Jikov, S. M. Kozlov and O.A. Oleinik, “Homogenization of Differential Operators and Integral Functionals”, Springer, Berlin, 1994. Zbl0801.35001MR1329546
  16. [16] M. Lenczner, Homogénéisation d’un circuit électrique, C.R. Acad. Sci. Paris, Ser. II 324 (1997), 537–542. Zbl0887.35016
  17. [17] J. L. Lions, “Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires”, Dunod, Paris, 1969. Zbl0189.40603
  18. [18] F. Murat, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), 489–507. Zbl0399.46022MR506997
  19. [19] F. Murat, Compacité par compensation. II, In: “Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis” held in Rome in 1978, E. De Giorgi and E. Magenes (eds.), Pitagora, Bologna, 1979, 245–256. Zbl0427.35008MR533170
  20. [20] F. Murat, A survey on compensated compactness, In: “Contributions to Modern Calculus of Variations”, Bologna, 1985, Pitman Res. Notes Math. Ser., Vol. 148, Longman, Harlow, 1987, 145–183. MR894077
  21. [21] F. Murat and L. Tartar, H-convergence, In: “Topics in the Mathematical Modelling of Composite Materials”, A. Cherkaev and R. Kohn (eds.), Birkhäuser, Boston 1997, 21–44. Zbl0920.35019MR1493039
  22. [22] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal.20 (1989), 608–623. Zbl0688.35007MR990867
  23. [23] G. Nguetseng, Asymptotic analysis for a stiff variational problem arising in mechanics, SIAM J. Math. Anal.21 (1990), 1394–1414. Zbl0723.73011MR1075584
  24. [24] E. Sanchez-Palencia, “Non-Homogeneous Media and Vibration Theory”, Springer, New York, 1980. Zbl0432.70002MR578345
  25. [25] J. Simon, Compact sets in the space L p ( 0 , T ; B ) , Ann. Mat. Pura Appl.146 (1987), 65–96. Zbl0629.46031MR916688
  26. [26] L. Tartar, “Course Peccot”, Collège de France, Paris 1977, unpublished, partially written in [21]. 
  27. [27] L. Tartar, Une nouvelle méthode de résolution d’équations aux dérivées partielles non linéaires, In: “Journées d’Analyse Non linéaire”, Springer, Berlin, 1978, 228–241. Zbl0414.35068MR519433
  28. [28] L. Tartar, Compensated compactness and applications to partial differential equations, In: “Nonlinear Analysis and Mechanics: Heriott-Watt Symposium”, Vol. IV, R. J. Knops (ed.), 1979, 136–212. Zbl0437.35004MR584398
  29. [29] L. Tartar, Mathematical tools for studying oscillations and concentrations: from Young measures to H-measures and their variants, In: “Multiscale Problems in Science and Technology”, N. Antonić, C. J. van Duijn, W. Jäger and A. Mikelić (eds.), Springer, Berlin, 2002, 1–84. Zbl1015.35001MR1998790
  30. [30] A. Visintin, Some properties of two-scale convergence, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 15 (2004), 93–107. Zbl1225.35031MR2148538
  31. [31] A. Visintin, Towards a two-scale calculus, ESAIM Control Optim. Calc. Var.12 (2006), 371–397. Zbl1110.35009MR2224819
  32. [32] A. Visintin, Homogenization of doubly-nonlinear equations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 17 (2006), 211–222. Zbl1223.35204MR2254068
  33. [33] A. Visintin, Two-scale convergence of first-order operators, Z. Anal. Anwendungen26 (2007), 133–164. Zbl1128.35018MR2314158
  34. [34] A. Visintin, Two-scale convergence of some integral functionals, Calc. Var. Partial Differential Equations29 (2007), 239–265. Zbl1129.35011MR2307775

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.