On the solvability of the equation div u = f in L 1 and in C 0

Bernard Dacorogna; Nicola Fusco; Luc Tartar

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2003)

  • Volume: 14, Issue: 3, page 239-245
  • ISSN: 1120-6330

Abstract

top
We show that the equation div u = f has, in general, no Lipschitz (respectively W 1 , 1 ) solution if f is C 0 (respectively L 1 ).

How to cite

top

Dacorogna, Bernard, Fusco, Nicola, and Tartar, Luc. "On the solvability of the equation div $u = f$ in $L^{1}$ and in $C^{0}$." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 14.3 (2003): 239-245. <http://eudml.org/doc/252292>.

@article{Dacorogna2003,
abstract = {We show that the equation div $u = f$ has, in general, no Lipschitz (respectively $W^\{1,1\}$) solution if $f$ is $C^\{0\}$ (respectively $L^\{1\}$).},
author = {Dacorogna, Bernard, Fusco, Nicola, Tartar, Luc},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Divergence; Lorentz spaces; Sobolev imbedding theorem; divergence},
language = {eng},
month = {9},
number = {3},
pages = {239-245},
publisher = {Accademia Nazionale dei Lincei},
title = {On the solvability of the equation div $u = f$ in $L^\{1\}$ and in $C^\{0\}$},
url = {http://eudml.org/doc/252292},
volume = {14},
year = {2003},
}

TY - JOUR
AU - Dacorogna, Bernard
AU - Fusco, Nicola
AU - Tartar, Luc
TI - On the solvability of the equation div $u = f$ in $L^{1}$ and in $C^{0}$
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2003/9//
PB - Accademia Nazionale dei Lincei
VL - 14
IS - 3
SP - 239
EP - 245
AB - We show that the equation div $u = f$ has, in general, no Lipschitz (respectively $W^{1,1}$) solution if $f$ is $C^{0}$ (respectively $L^{1}$).
LA - eng
KW - Divergence; Lorentz spaces; Sobolev imbedding theorem; divergence
UR - http://eudml.org/doc/252292
ER -

References

top
  1. BERGH, J. - LÖFSTRÖ, J., Interpolation spaces: an introduction. Springer-Verlag, Berlin1976. Zbl0344.46071MR482275
  2. BOURGAIN, J. - BREZIS, H., Sur l’équation div u = f . C. R. Acad. Sci. Paris, ser. I, 334, 2002, 973-976. Zbl0999.35020MR1913720
  3. GILBARG, D. - TRUDINGER, N.S., Elliptic partial differential equations of second order. Springer-Verlag, Berlin1977. Zbl0562.35001MR473443
  4. MC MULLEN, C.T., Lipschitz maps and nets in Euclidean space. Geom. Funct. Anal., 8, 1998, 304-314. Zbl0941.37030MR1616159DOI10.1007/s000390050058
  5. ORNSTEIN, D., A non-inequality for differential operators in the L 1 norm. Arch. Ration. Mech. Anal., 11, 1962, 40-49. Zbl0106.29602MR149331
  6. PREISS, D., Additional regularity for Lipschitz solutions of PDE. J. Reine Angew. Math., 485, 1997, 197-207. Zbl0870.35022MR1442194DOI10.1515/crll.1997.485.197
  7. STEIN, E.M., Singular integrals and differentiability properties of functions. Princeton University Press, Princeton1970. Zbl0207.13501MR290095
  8. STEIN, E.M. - WEISS, G., Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton1971. Zbl1026.42001MR304972
  9. TARTAR, L., Imbedding theorems of Sobolev spaces into Lorentz spaces. Bollettino UMI, 1-B, 1998, 479-500. Zbl0929.46028MR1662313

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.