On a class of elliptic operators with unbounded coefficients in convex domains

Giuseppe Da Prato; Alessandra Lunardi

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2004)

  • Volume: 15, Issue: 3-4, page 315-326
  • ISSN: 1120-6330

Abstract

top
We study the realization A of the operator A = 1 2 - ( D U , D ) in L 2 Ω , μ , where Ω is a possibly unbounded convex open set in R N , U is a convex unbounded function such that lim x Ω , x Ω U x = + and lim x + , x Ω U x = + , D U x is the element with minimal norm in the subdifferential of U at x , and μ d x = c exp - 2 U x d x is a probability measure, infinitesimally invariant for A . We show that A , with domain D A = u H 2 Ω , μ : D U , D u L 2 Ω , μ is a dissipative self-adjoint operator in L 2 Ω , μ . Note that the functions in the domain of A do not satisfy any particular boundary condition. Log-Sobolev and Poincaré inequalities allow then to study smoothing properties and asymptotic behavior of the semigroup generated by A .

How to cite

top

Da Prato, Giuseppe, and Lunardi, Alessandra. "On a class of elliptic operators with unbounded coefficients in convex domains." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 15.3-4 (2004): 315-326. <http://eudml.org/doc/252303>.

@article{DaPrato2004,
abstract = {We study the realization $A$ of the operator $\mathcal\{A\} =\frac\{1\}\{2\} \triangle - (DU, D\cdot)$ in $L^\{2\}(\Omega, \mu)$, where $\Omega$ is a possibly unbounded convex open set in $\mathbb\{R\}^\{N\}$, $U$ is a convex unbounded function such that $\lim_\{x \rightarrow \partial \Omega, \, x \in \Omega\} U(x) = + \infty$ and $\lim_\{|x| \rightarrow + \infty, \, x \in \Omega\} U(x) = + \infty$, $DU(x)$ is the element with minimal norm in the subdifferential of $U$ at $x$, and $\mu(dx) = c \exp (-2 U(x)) dx$ is a probability measure, infinitesimally invariant for $\mathcal\{A\}$. We show that $A$, with domain $D(A) = \\{u \in H^\{2\}(\Omega,\mu): (DU, Du) \in L^\{2\}(\Omega,\mu)\\}$ is a dissipative self-adjoint operator in $L^\{2\}(\Omega,\mu)$. Note that the functions in the domain of $A$ do not satisfy any particular boundary condition. Log-Sobolev and Poincaré inequalities allow then to study smoothing properties and asymptotic behavior of the semigroup generated by $A$.},
author = {Da Prato, Giuseppe, Lunardi, Alessandra},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Kolmogorov operators; Unbounded coefficients; Convex domains},
language = {eng},
month = {12},
number = {3-4},
pages = {315-326},
publisher = {Accademia Nazionale dei Lincei},
title = {On a class of elliptic operators with unbounded coefficients in convex domains},
url = {http://eudml.org/doc/252303},
volume = {15},
year = {2004},
}

TY - JOUR
AU - Da Prato, Giuseppe
AU - Lunardi, Alessandra
TI - On a class of elliptic operators with unbounded coefficients in convex domains
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2004/12//
PB - Accademia Nazionale dei Lincei
VL - 15
IS - 3-4
SP - 315
EP - 326
AB - We study the realization $A$ of the operator $\mathcal{A} =\frac{1}{2} \triangle - (DU, D\cdot)$ in $L^{2}(\Omega, \mu)$, where $\Omega$ is a possibly unbounded convex open set in $\mathbb{R}^{N}$, $U$ is a convex unbounded function such that $\lim_{x \rightarrow \partial \Omega, \, x \in \Omega} U(x) = + \infty$ and $\lim_{|x| \rightarrow + \infty, \, x \in \Omega} U(x) = + \infty$, $DU(x)$ is the element with minimal norm in the subdifferential of $U$ at $x$, and $\mu(dx) = c \exp (-2 U(x)) dx$ is a probability measure, infinitesimally invariant for $\mathcal{A}$. We show that $A$, with domain $D(A) = \{u \in H^{2}(\Omega,\mu): (DU, Du) \in L^{2}(\Omega,\mu)\}$ is a dissipative self-adjoint operator in $L^{2}(\Omega,\mu)$. Note that the functions in the domain of $A$ do not satisfy any particular boundary condition. Log-Sobolev and Poincaré inequalities allow then to study smoothing properties and asymptotic behavior of the semigroup generated by $A$.
LA - eng
KW - Kolmogorov operators; Unbounded coefficients; Convex domains
UR - http://eudml.org/doc/252303
ER -

References

top
  1. BOGACHEV, V.I. - KRYLOV, N.V. - RÖCKNER, M., On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions. Comm. Part. Diff. Eqns., 26, 2001, 2037- 2080. Zbl0997.35012MR1876411DOI10.1081/PDE-100107815
  2. BRÉZIS, H., Opérateurs maximaux monotones. North-Holland, Amsterdam1973. 
  3. CERRAI, S., Second order PDE’s in finite and infinite dimensions. A probabilistic approach. Lecture Notes in Mathematics, 1762, Springer-Verlag, Berlin2001. Zbl0983.60004MR1840644DOI10.1007/b80743
  4. DAVIES, E.B., Heat kernels and spectral theory. Cambridge Univ. Press, Cambridge1989. Zbl0699.35006MR990239DOI10.1017/CBO9780511566158
  5. DA PRATO, G. - LUNARDI, A., Elliptic operators with unbounded drift coefficients and Neumann boundary condition. J. Diff. Eqns., 198, 2004, 35-52. Zbl1046.35025MR2037749DOI10.1016/j.jde.2003.10.025
  6. DA PRATO, G. - RÖCKNER, M., Singular dissipative stochastic equations in Hilbert spaces. Probab. Theory Relat. Fields, 124, 2002, 261-303. Zbl1036.47029MR1936019DOI10.1007/s004400200214
  7. EBERLE, A., Uniqueness and non-uniqueness of singular diffusion operators. Lecture Notes in Mathematics, 1718, Springer-Verlag, Berlin1999. Zbl0957.60002MR1734956
  8. KRYLOV, N.V., On Kolmogorov’s equations for finite-dimensional diffusions. In: G. DA PRATO (ed.), Stochastic PDE’s and Kolmogorov Equations in Infinite Dimensions. Lecture Notes in Mathematics, 1715, Springer-Verlag, Berlin1999, 1-64. Zbl0927.00037MR1730228
  9. LAMBERTON, D., Equations d’évolution linéaires associées à des semi-groupes de contractions dans les espaces L p . J. Funct. Anal., 72, 1987, 252-262. Zbl0621.47039MR886813DOI10.1016/0022-1236(87)90088-7
  10. LUNARDI, A. - VESPRI, V., Optimal L and Schauder estimates for elliptic and parabolic operators with unbounded coefficients. In: G. CARISTI - E. MITIDIERI (eds.), Proceedings of the Conference Reaction-Diffusion Systems (Trieste 1995). Lect. Notes in Pure and Applied Math., 194, M. Dekker, New York1998, 217-239. Zbl0887.47034MR1472521
  11. PETERSEN, K., Ergodic Theory. Cambridge Univ. Press, Cambridge1983. Zbl0676.28008
  12. RÖCKNER, M., L p -analysis of finite and infinite dimensional diffusion operators. In: G. DA PRATO (ed.), Stochastic PDE's and Kolmogorov Equations in Infinite Dimensions. Lecture Notes in Mathematics, 1715, Springer-Verlag, Berlin1999, 65-116. Zbl0944.60078
  13. STANNAT, W., (Nonsymmetric) Dirichlet operators on L 1 : existence, uniqueness and associated Markov processes. Ann. Sc. Norm. Sup. Pisa, Ser. IV, 28, 1999, 99-140. Zbl0946.31003MR1679079
  14. TRIEBEL, H., Interpolation theory, function spaces, differential operators. North-Holland, Amsterdam1978. Zbl0387.46032MR503903

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.