(Nonsymmetric) Dirichlet operators on L 1 : existence, uniqueness and associated Markov processes

Wilhelm Stannat

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1999)

  • Volume: 28, Issue: 1, page 99-140
  • ISSN: 0391-173X

How to cite

top

Stannat, Wilhelm. "(Nonsymmetric) Dirichlet operators on $L^1$ : existence, uniqueness and associated Markov processes." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 28.1 (1999): 99-140. <http://eudml.org/doc/84374>.

@article{Stannat1999,
author = {Stannat, Wilhelm},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {sub-Markovian semigroup; Cauchy problem; second order differential operators; invariant measure; uniqueness of maximal extensions; Dirichlet form},
language = {eng},
number = {1},
pages = {99-140},
publisher = {Scuola normale superiore},
title = {(Nonsymmetric) Dirichlet operators on $L^1$ : existence, uniqueness and associated Markov processes},
url = {http://eudml.org/doc/84374},
volume = {28},
year = {1999},
}

TY - JOUR
AU - Stannat, Wilhelm
TI - (Nonsymmetric) Dirichlet operators on $L^1$ : existence, uniqueness and associated Markov processes
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1999
PB - Scuola normale superiore
VL - 28
IS - 1
SP - 99
EP - 140
LA - eng
KW - sub-Markovian semigroup; Cauchy problem; second order differential operators; invariant measure; uniqueness of maximal extensions; Dirichlet form
UR - http://eudml.org/doc/84374
ER -

References

top
  1. [ABR] S. Albeverio - V.I. Bogachev - M. Röckner, On uniqueness ofinvariant measures for finite and infinite dimensional diffusions, to appear in Comm. Pure Appl. Math. (1998). Zbl0998.60064MR1656067
  2. [AKR1] S. Albeverio - Y U.G. Kondratiev - M. Röckner, An approximate criterium of essential self-adjointness of Dirichlet operators, Potential Anal.1 (1992), 307-317. Zbl0808.47021MR1245233
  3. [AKR2] S. Albeverio - Y U.G. Kondratiev - M. Röckner, Dirichlet operators via stochastic analysis, J. Funct. Anal.128 (1995), 102-138. Zbl0820.60042MR1317712
  4. [AR1] S. Albeverio - M. Röckner, Classical Dirichlet forms on topological vector spaces - Closability and a Cameron-Martin formula, J. Funct. Anal.88 (1990), 395-436. Zbl0737.46036MR1038449
  5. [AR2] S. Albeverio - M. Röckner, Dirichlet form methods for uniqueness of martingale problems and applications, in: "Stochastic Analysis". Proceedings of Symposia in Pure Mathematics, vol. 57 (1995), Am. Math. Soc. Rhode Island, 513-528. Zbl0824.31005MR1335494
  6. [B] V.I. Bogachev, "Gaussian Measures", Mathematical Surveys and Monographs, vol. 62, AMS, Providence, 1998. Zbl0913.60035MR1642391
  7. [BKR1] V.I. Bogachev - N. Krylov - M. Röckner, Regularity of invariant measures: the case of non-constant diffusion part, J. Funct. Anal.138 (1996), 223-242. Zbl0929.60039MR1391637
  8. [BKR2] V.I. Bogachev - N. Krylov - M. Röckner, Elliptic regularity and essential self-adjointness of Dirichlet operators on Rn, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), 451-461. Zbl0901.35017MR1612385
  9. [BH] N. Bouleau - F. Hirsch, "Dirichlet Forms and Analysis on Wiener space", Walter de Gruyter, Berlin, 1991. Zbl0748.60046MR1133391
  10. [BR] V.I. Bogachev - M. Röckner, Regularity of invariant measures onfinite and infinite dimensional spaces and applications, J. Funct. Anal.133 (1995), 168-223. Zbl0840.60069MR1351647
  11. [Ca] E.A. Carlen, Stochastic mechanics of free scalar fields, "Stochastic mechanics and stochastic processes" (Swansea, 1986), Lecture Notes in Math. 1325, Springer, Berlin, (1988), 40-60. Zbl0648.60108MR960157
  12. [D1] E.B. Davies, "One-Parameter Semigroups", Academic Press, New York, 1980. Zbl0457.47030MR591851
  13. [D2] E.B. Davies, L1-Properties of second order elliptic operators, Bull. London Math. Soc.17 (1985), 417-436. Zbl0583.35032MR806008
  14. [DeM] C. Dellacherie - P.-A. Meyer, "Probabilities and Potential C", North-Holland, Amsterdam, 1988. Zbl0716.60001MR939365
  15. [E] A. Eberle, Uniqueness and non-uniqueness of singular diffusion operators, Doctor degree thesis, Universität Bielefeld, 1998. Zbl0902.35063
  16. [FOT] M. Fukushima - Y. Oshima - M. Takeda, "Dirichlet Forms and Symmetric Markov Processes", Walter de Gruyter, Berlin, 1994. Zbl0838.31001MR1303354
  17. [Gr] L. Gross, Logarithmic Sobolev inequalities and contractivity properties of semigroups, in: G. DELL'ANTONIO, U. Mosco (Editors), " Dirichlet Forms", Lecture Notes in Mathematics 1563 (1992), Springer, Berlin. Zbl0812.47037MR1292277
  18. [K] N.V. Krylov, "Lectures on Elliptic and Parabolic Equations in Hölder Spaces", Graduate Studies in Mathematics, vol. 12, American Mathematical Society, 1996. Zbl0865.35001MR1406091
  19. [MR] Z.M. Ma - M. Röckner, "Introduction to the Theory of (Non-Symmetric) Dirichlet Forms", Berlin - Heidelberg - New York, Springer, 1992. Zbl0826.31001MR1214375
  20. [Na] R. NAGEL (Editor), " One-parameter Semigroups of Positive Operators", Lecture Notes in Math. 1184, Springer, Berlin, 1986. Zbl0585.47030MR839450
  21. [Pa] A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations", Springer, Berlin, 1983. Zbl0516.47023MR710486
  22. [ReSi] M. Reed - B. Simon, "Methods of modem mathematical physics II. Fourier Analysis", Academic Press, New York - San Francisco - London, 1975. Zbl0308.47002MR493420
  23. [RSch] M. Röckner - B. Schmuland, Quasi-regular Dirichlet forms: examples and counterexamples, Canad. J. Math. (1) 47 (1995), 165-200. Zbl0827.31006MR1319695
  24. [RZ] M. Röckner - T.S. Zhang, Uniqueness of generalized Schrödinger operators, Part II, J. Funct. Anal.119 (1994), 455-467. Zbl0799.35053MR1261099
  25. [Si] B. Simon, "The P (Φ)2 Euclidean (Quantum) field theory", Princeton University Press, Princeton, 1974. Zbl1175.81146
  26. [S] K.- Th. Sturm, Analysis on local Dirichlet spaces, I. Recurrence, conservativeness and LP -Liouville properties, J. Reine Angew. Math.456 (1994), 173-196. Zbl0806.53041MR1301456
  27. [St1] W. Stannat, The theory of generalized Dirichlet forms and its applications in analysis and stochastics, SFB-343-Preprint 97-101, Bielefeld, to appear in Memoirs of the AMS (1997). Zbl0868.31010MR1632609
  28. [St2] W. Stannat, First order perturbations of Dirichlet operators: existence and uniqueness, J. Funct. Anal.141 (1996), 216-248. Zbl0911.47037MR1414378

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.