The fourth tautological group of and relations with the cohomology
- Volume: 14, Issue: 2, page 137-168
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topPolito, Marzia. "The fourth tautological group of $\overline{\mathfrak{M}}_{g,n}$ and relations with the cohomology." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 14.2 (2003): 137-168. <http://eudml.org/doc/252316>.
@article{Polito2003,
abstract = {We give a complete description of the fourth tautological group of the moduli space of pointed stable curves, $\overline\{\mathfrak\{M\}\}_\{g,n\}$, and prove that for $g \ge 8$ it coincides with the cohomology group with rational coefficients. We further give a conjectural upper bound depending on the genus for the degree of new tautological relations.},
author = {Polito, Marzia},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Algebraic geometry; Algebraic curves; Moduli spaces; Cohomology; Cohomplogy},
language = {eng},
month = {6},
number = {2},
pages = {137-168},
publisher = {Accademia Nazionale dei Lincei},
title = {The fourth tautological group of $\overline\{\mathfrak\{M\}\}_\{g,n\}$ and relations with the cohomology},
url = {http://eudml.org/doc/252316},
volume = {14},
year = {2003},
}
TY - JOUR
AU - Polito, Marzia
TI - The fourth tautological group of $\overline{\mathfrak{M}}_{g,n}$ and relations with the cohomology
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2003/6//
PB - Accademia Nazionale dei Lincei
VL - 14
IS - 2
SP - 137
EP - 168
AB - We give a complete description of the fourth tautological group of the moduli space of pointed stable curves, $\overline{\mathfrak{M}}_{g,n}$, and prove that for $g \ge 8$ it coincides with the cohomology group with rational coefficients. We further give a conjectural upper bound depending on the genus for the degree of new tautological relations.
LA - eng
KW - Algebraic geometry; Algebraic curves; Moduli spaces; Cohomology; Cohomplogy
UR - http://eudml.org/doc/252316
ER -
References
top- ARBARELLO, E. - CORNALBA, M., Calculating cohomology groups of moduli spaces of curves via algebraic geometry. Inst. Hautes Etudes Sci. Publ. Math., 88, 1998, 97-127. Zbl0991.14012MR1733327
- ARBARELLO, E. - CORNALBA, M., Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves. J. Algebraic Geometry, 5, 1996, 705-749. Zbl0886.14007MR1486986
- ARBARELLO, E. - CORNALBA, M. - GRIFFITHS, P. - HARRIS, J., Geometry of algebraic curves, I. Grundlehren der math. Wiss, vol. 267, Springer-Verlag, New York1984. Zbl0559.14017
- ARBARELLO, E. - CORNALBA, M. - GRIFFITHS, P. - HARRIS, J., Geometry of algebraic curves, II. To appear. Zbl0559.14017
- BELOROUSSKI, P., Chow rings of moduli spaces of pointed elliptic curves. PhD thesis, University of Chicago, 1998. MR2716762
- BELOROUSSKI, P. - PANDHARIPANDE, R., A descendent relation in genus . Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, vol. XXIX, 2000, 172-191. Zbl0981.81063MR1765541
- CORNALBA, M., Cohomology of Moduli Spaces of Stable Curves. Documenta Mathematica, Extra Vol. ICM 1998, II, 249-257. Zbl0902.14017MR1648075
- EDIDIN, D., The codimension-two homology of the moduli space of stable curves is algebraic. Duke Math. Journ., 67, n. 2, 1992, 241-272. Zbl0766.14017MR1177306DOI10.1215/S0012-7094-92-06709-3
- FABER, C., Chow rings of moduli spaces of curves I: The Chow ring of . Annals of Mathematics, 132, 1990, 331-419. Zbl0721.14013MR1070600DOI10.2307/1971525
- FABER, C., Chow rings of moduli spaces of curves II: Some result on the Chow ring of . Annals of Mathematics, 132, 1990, 421-449. Zbl0735.14021MR1078265DOI10.2307/1971526
- FABER, C., Algorithms for computing the intersection numbers on moduli space of curves, with an application to the class of the locus of Jacobians. In: K. HULEK et al. (eds.), New trends in Algebraic Geometry. Cambridge University Press, 1999, 29-45. Zbl0952.14042MR1714822DOI10.1017/CBO9780511721540.006
- FABER, C., Private communication, 1999.
- FABER, C., A conjectural description of the tautological ring of the moduli space of curves. In: C. FABER - E. LOOIJENGA (eds.), Moduli of curves and abelian varieties, The Dutch Intercity Seminar on Moduli. Aspects of Maths., E 33, Vieweg, 1999. Zbl0978.14029MR1722541
- GETZLER, E., Intersection theory on and elliptic Gromov-Witten invariants. J. Amer. Math. Soc., 10, n. 4, 1997, 973-998. Zbl0909.14002MR1451505DOI10.1090/S0894-0347-97-00246-4
- GETZLER, E., Topological recursion relations in genus 2. In: M.H. SAITO - Y. SHIMIZU - K. UENO (eds.), Integrable systems and algebraic geometry (Kobe/Kyoto, 1997). World Sci. Publishing, Singapore-London1998, 73-106. Zbl1021.81056MR1672112
- HARER, J., Improved stability for the homology of the mapping class group of orientable surfaces. Duke University Preprint, 1993. Zbl0579.57005
- IVANOV, N., On the homology stability for Teichmüller modular groups: closed surfaces and twisted coefficients. Contemporary Math., 150, 1993, 149-194. Zbl0794.32019MR1234264DOI10.1090/conm/150/01290
- KEEL, S., Intersection theory of moduli space of stable -pointed curves of genus . Trans. of AMS, 330, n. 2, 1992. Zbl0768.14002MR1034665DOI10.2307/2153922
- LOOJENGA, E., Stable cohomology of the mapping class group with symplectic coefficients and the universal Abel-Jacobi map. J. Algebraic Geometry, 5, 1996, 135-150. Zbl0860.57010MR1358038
- MUMFORD, D., Towards an enumerative geometry of the moduli space of curves. In: M. ARTIN - J. TATE (eds.), Arithmetic and Geometry, vol. II. Progress in Math., 36, Birkhäuser, Boston1983, 483-510. Zbl0554.14008MR717614
- PANDHARIPANDE, R., A geometric construction of Getzler’s Elliptic relation. Math. Ann., 313, n. 4, 1999, 715-729. Zbl0933.14035MR1686935DOI10.1007/s002080050279
- POLITO, M., The fourth cohomology group of the moduli space of stable curves. Tesi di Perfezionamento, Scuola Normale Superiore, Pisa, a.a. 1998-99.
- SPANIER, E.H., Algebraic Topology. Mc Graw-Hill Series in Higher Math., Mc Graw-Hill, New York-London1996. Zbl0145.43303MR210112
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.