The fourth tautological group of M ¯ g , n and relations with the cohomology

Marzia Polito

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2003)

  • Volume: 14, Issue: 2, page 137-168
  • ISSN: 1120-6330

Abstract

top
We give a complete description of the fourth tautological group of the moduli space of pointed stable curves, M ¯ g , n , and prove that for g 8 it coincides with the cohomology group with rational coefficients. We further give a conjectural upper bound depending on the genus for the degree of new tautological relations.

How to cite

top

Polito, Marzia. "The fourth tautological group of $\overline{\mathfrak{M}}_{g,n}$ and relations with the cohomology." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 14.2 (2003): 137-168. <http://eudml.org/doc/252316>.

@article{Polito2003,
abstract = {We give a complete description of the fourth tautological group of the moduli space of pointed stable curves, $\overline\{\mathfrak\{M\}\}_\{g,n\}$, and prove that for $g \ge 8$ it coincides with the cohomology group with rational coefficients. We further give a conjectural upper bound depending on the genus for the degree of new tautological relations.},
author = {Polito, Marzia},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Algebraic geometry; Algebraic curves; Moduli spaces; Cohomology; Cohomplogy},
language = {eng},
month = {6},
number = {2},
pages = {137-168},
publisher = {Accademia Nazionale dei Lincei},
title = {The fourth tautological group of $\overline\{\mathfrak\{M\}\}_\{g,n\}$ and relations with the cohomology},
url = {http://eudml.org/doc/252316},
volume = {14},
year = {2003},
}

TY - JOUR
AU - Polito, Marzia
TI - The fourth tautological group of $\overline{\mathfrak{M}}_{g,n}$ and relations with the cohomology
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2003/6//
PB - Accademia Nazionale dei Lincei
VL - 14
IS - 2
SP - 137
EP - 168
AB - We give a complete description of the fourth tautological group of the moduli space of pointed stable curves, $\overline{\mathfrak{M}}_{g,n}$, and prove that for $g \ge 8$ it coincides with the cohomology group with rational coefficients. We further give a conjectural upper bound depending on the genus for the degree of new tautological relations.
LA - eng
KW - Algebraic geometry; Algebraic curves; Moduli spaces; Cohomology; Cohomplogy
UR - http://eudml.org/doc/252316
ER -

References

top
  1. ARBARELLO, E. - CORNALBA, M., Calculating cohomology groups of moduli spaces of curves via algebraic geometry. Inst. Hautes Etudes Sci. Publ. Math., 88, 1998, 97-127. Zbl0991.14012MR1733327
  2. ARBARELLO, E. - CORNALBA, M., Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves. J. Algebraic Geometry, 5, 1996, 705-749. Zbl0886.14007MR1486986
  3. ARBARELLO, E. - CORNALBA, M. - GRIFFITHS, P. - HARRIS, J., Geometry of algebraic curves, I. Grundlehren der math. Wiss, vol. 267, Springer-Verlag, New York1984. Zbl0559.14017
  4. ARBARELLO, E. - CORNALBA, M. - GRIFFITHS, P. - HARRIS, J., Geometry of algebraic curves, II. To appear. Zbl0559.14017
  5. BELOROUSSKI, P., Chow rings of moduli spaces of pointed elliptic curves. PhD thesis, University of Chicago, 1998. MR2716762
  6. BELOROUSSKI, P. - PANDHARIPANDE, R., A descendent relation in genus 2 . Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, vol. XXIX, 2000, 172-191. Zbl0981.81063MR1765541
  7. CORNALBA, M., Cohomology of Moduli Spaces of Stable Curves. Documenta Mathematica, Extra Vol. ICM 1998, II, 249-257. Zbl0902.14017MR1648075
  8. EDIDIN, D., The codimension-two homology of the moduli space of stable curves is algebraic. Duke Math. Journ., 67, n. 2, 1992, 241-272. Zbl0766.14017MR1177306DOI10.1215/S0012-7094-92-06709-3
  9. FABER, C., Chow rings of moduli spaces of curves I: The Chow ring of M ¯ 3 . Annals of Mathematics, 132, 1990, 331-419. Zbl0721.14013MR1070600DOI10.2307/1971525
  10. FABER, C., Chow rings of moduli spaces of curves II: Some result on the Chow ring of M ¯ 4 . Annals of Mathematics, 132, 1990, 421-449. Zbl0735.14021MR1078265DOI10.2307/1971526
  11. FABER, C., Algorithms for computing the intersection numbers on moduli space of curves, with an application to the class of the locus of Jacobians. In: K. HULEK et al. (eds.), New trends in Algebraic Geometry. Cambridge University Press, 1999, 29-45. Zbl0952.14042MR1714822DOI10.1017/CBO9780511721540.006
  12. FABER, C., Private communication, 1999. 
  13. FABER, C., A conjectural description of the tautological ring of the moduli space of curves. In: C. FABER - E. LOOIJENGA (eds.), Moduli of curves and abelian varieties, The Dutch Intercity Seminar on Moduli. Aspects of Maths., E 33, Vieweg, 1999. Zbl0978.14029MR1722541
  14. GETZLER, E., Intersection theory on M ¯ 1 , 4 and elliptic Gromov-Witten invariants. J. Amer. Math. Soc., 10, n. 4, 1997, 973-998. Zbl0909.14002MR1451505DOI10.1090/S0894-0347-97-00246-4
  15. GETZLER, E., Topological recursion relations in genus 2. In: M.H. SAITO - Y. SHIMIZU - K. UENO (eds.), Integrable systems and algebraic geometry (Kobe/Kyoto, 1997). World Sci. Publishing, Singapore-London1998, 73-106. Zbl1021.81056MR1672112
  16. HARER, J., Improved stability for the homology of the mapping class group of orientable surfaces. Duke University Preprint, 1993. Zbl0579.57005
  17. IVANOV, N., On the homology stability for Teichmüller modular groups: closed surfaces and twisted coefficients. Contemporary Math., 150, 1993, 149-194. Zbl0794.32019MR1234264DOI10.1090/conm/150/01290
  18. KEEL, S., Intersection theory of moduli space of stable n -pointed curves of genus 0 . Trans. of AMS, 330, n. 2, 1992. Zbl0768.14002MR1034665DOI10.2307/2153922
  19. LOOJENGA, E., Stable cohomology of the mapping class group with symplectic coefficients and the universal Abel-Jacobi map. J. Algebraic Geometry, 5, 1996, 135-150. Zbl0860.57010MR1358038
  20. MUMFORD, D., Towards an enumerative geometry of the moduli space of curves. In: M. ARTIN - J. TATE (eds.), Arithmetic and Geometry, vol. II. Progress in Math., 36, Birkhäuser, Boston1983, 483-510. Zbl0554.14008MR717614
  21. PANDHARIPANDE, R., A geometric construction of Getzler’s Elliptic relation. Math. Ann., 313, n. 4, 1999, 715-729. Zbl0933.14035MR1686935DOI10.1007/s002080050279
  22. POLITO, M., The fourth cohomology group of the moduli space of stable curves. Tesi di Perfezionamento, Scuola Normale Superiore, Pisa, a.a. 1998-99. 
  23. SPANIER, E.H., Algebraic Topology. Mc Graw-Hill Series in Higher Math., Mc Graw-Hill, New York-London1996. Zbl0145.43303MR210112

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.